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Abstract. Precise risk assessment and individualized preventive strategies are 
essential areas in healthcare, as cardiovascular diseases (CVD) are the leading 
cause of death in the world. Our prototype Clinical Decision Support System 
(CDSS) for predicting and preventing cardiovascular risks is based on a hybrid 
architecture that integrates machine learning models and knowledge bases, uti-
lizing a microservice architecture with a Cloud-Edge approach and implement-
ing the principles of explainable artificial intelligence (XAI) due to their im-
portance for the success of CDSS and its acceptance by healthcare providers. 
The system incorporates risk assessment tools (SCORE, SCORE 2, GRACE, 
EuroSCORE II, Diamond-Forrester, etc.) and proprietary machine learning 
models for predicting in-hospital mortality, development of postoperative atrial 
fibrillation, and the probability of obstructive coronary artery disease. These 
models contribute to informed clinical decision-making for the diagnosis, pre-
vention, and treatment of CVD. The prototype system was implemented at the 
Medical Center of the Far Eastern Federal University and integrated with the 
healthcare information system “1C”. The implementation experience demon-
strated the high potential of hybrid CDSS based on microservice architecture 
for clinical practice use.  
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1 Introduction 

To reduce the risk of medical errors and expand diagnostic capabilities in medicine, 
healthcare process management systems are employed, which include medical infor-
mation systems (MIS) and clinical decision support systems (CDSS) [18]. The devel-
opment of CDSS is associated with the history of AI, trends in healthcare, and archi-
tectural solutions for corporate information systems. Several CDSS architectures are 
distinguished: autonomous, MIS-integrated, standardized, and service-oriented mod-
els [20]. Contemporary autonomous systems are scale calculators with a service archi-
tecture (SaaS), where data is manually entered by physicians, but integration with a 
physician's workplace is complex. MIS-integrated systems do not require repeated 



input but are demanding in terms of developer competencies, limiting their scalability 
potential [8]. An attempt was made to standardize CDSS content for simplified em-
bedding in MIS from different manufacturers [2]. Over the last two decades, CDSS 
have interacted with MIS through application programming interfaces (APIs) [15]. 
Virtual medical records are used to standardize medical terminology across multiple 
MIS for a single concept. It is now the turn of web service-based CDSS [11]. Such a 
system requires electronic medical records (EMR) transmission from MIS, increasing 
demands on MIS providers and expenses for medical organizations. Formalized 
knowledge from individual clinical medicine domains is stored in CDSS and matched 
with patients' clinical-functional and laboratory indicators to support clinical decision-
making [13]. Machine learning (ML) is used for diagnosing and predicting disease 
development and complications [4]. Data-based ML models expand CDSS capabili-
ties [12]. 

The goal of the study is to develop a hybrid CDSS architecture based on the inte-
gration of knowledge and machine learning models into a single set of services that 
provide diagnosis and prediction of diseases and their complications, as well as treat-
ment prescription. 

2 Publication analysis 

The CDSS are classified as either knowledge-based or data-based. The former in-
cludes knowledge bases and the ability to combine these rules with patient data, ap-
plying inference and reasoning mechanisms [3]. The CDSS evolve by providing phy-
sicians with up-to-date knowledge from clinical guidelines [14]. The advantage is 
explanations based on formalized rules [19]. The second type of CDSS uses machine 
learning for decision-making [17]. Despite successes, few machine learning models 
have been implemented in clinical practice [6]. The success of machine learning-
based systems is associated with the development of methods to explain the decisions 
made [10]. However, CDSS often do not yet include explainable AI [1]. 

Contemporary projects propose a hybrid architecture; for example, the ITMO 
CDSS combines machine learning models and knowledge bases [12]. Supporting ex-
planation tools, updating models and knowledge, enhance trust in the system [7]. 

The use of service-oriented architecture is attractive for CDSS design [7]. The in-
tegration of CDSS into HIS through the FHIR interface is relevant against the back-
drop of microservice architecture [16]. 

For image processing, it is proposed to combine cloud-edge computing, where part 
of the processing is performed in the cloud, and part at the physician's workstation 
[5]. Authors of CDSS projects based on microservice architecture point to increased 
system complexity, longer transaction times, and more complicated logging of multi-
ple services..  



3 Clinical decision support system 

Hybrid CDSS, combining knowledge bases and machine learning models, leverage 
the advantages of both system types. Knowledge bases provide interpretation of re-
sults, while machine learning models offer up-to-date risk assessments and forecasts. 
Explainable AI methods are required for further research to interpret machine learning 
results, which can then be integrated into knowledge bases. 

Service-oriented architecture, especially microservices, is beneficial for long-term 
application, refinement, and maintenance of complex multi-module systems requiring 
integration with HIS, laboratory information systems, and patient monitoring devices. 

 

3.1 Key Requirements  

A physician's activity involves solving several tasks: disease diagnosis, including dif-
ferential diagnosis; assessment of disease development prognosis and complications; 
treatment prescription, including invasive procedures; treatment outcomes prediction; 
patient health monitoring; communication with patients; administrative tasks related 
to medical care.  

Physicians' activities are regulated by protocols and clinical guidelines, requiring 
validation of new tools and explanations of decisions made. These conditions define 
the functions of CDSS: 
1. Patient health monitoring: a) verification of criteria values and selection of rec-

ommendations; b) identification of risk factors and prognoses. 
2. Disease diagnosis according to the international classification and intelligent data 

analysis. 
3. Treatment prescription considering patient-specific features. 
4. Prediction of disease development dynamics and treatment. 

The CDSS employs a hybrid architecture, combining intelligent systems and ma-
chine learning models to support regulated rules and prognostic scales. Decision ex-
planations can be facilitated using both concepts. Convenience and integration with 
HIS are ensured by a built-in user interface, providing information to physicians at 
their workplace in a familiar environment. 

3.2 The Concept  

To support decision-making, CDSS utilize artificial intelligence methods based on 
data and knowledge. Knowledge is extracted from datasets using mathematical statis-
tics and machine learning methods, and formalized rules are applied to medical data 
for diagnosis and treatment recommendations. Explanations can be based on protocols 
and recommendations or on explainable AI methods. Thus, the informational compo-
nents of CDSS include: 
1. Ontologies – templates for formalizing knowledge in the form of conceptual 

schemas, knowledge bases. 



2. Knowledge – formally represented dependencies and cause-effect relationships 
between data. They can be formalized, semi-formalized, and non-formalized. 

3. Data – facts of the subject area, organized according to the conceptual schema. 
Formalized data, such as electronic medical records, are organized according to on-

tology and include named fields with characteristics describing modality, synonymy, 
multilingualism, etc. Synonymy ensures compatibility with different HIS and the use 
of different terms for identical concepts. Non-formalized (or semi-formalized) data, 
such as images, texts, graphs, diagrams, audio information, etc., require additional 
specialized formalization procedures. 

Formalized knowledge contains domain-specific rules and is applied to data or the 
results of their processing to make decisions. They describe diagnostic protocols, 
treatment, and clinical recommendations. 

Using formalized rules, CDSS describe prognostic scales, interpretation of results, 
and application of knowledge to data. Semi-formalized knowledge contains descrip-
tions of machine learning prognostic models, while non-formalized knowledge in-
cludes textual, graphical, and audio information. Prognostic machine learning models, 
such as linear and logistic regression, random forest, stochastic gradient boosting, and 
artificial neural networks, are used for diagnosing and predicting the development of 
diseases and their complications. 

Primary medical data (EHR) are used to provide information to physicians and 
form datasets for scientific research and model training. CDSS obtains data through 
integration with HIS, import from external sources, or via the user interface. 

Data from HIS are used for processing physician requests and further research. Im-
ported data are intended for analysis, model training, and rule verification, as well as 
for searching for clinical case analogs. Inputting data through the user interface allows 
for testing the operation of models, algorithms, and simulating prognostic and diag-
nostic decisions when changing patient risk factors and in the absence of HIS. 

Microservices and software solvers apply knowledge to data. Microservices im-
plement calculations using machine learning models, while software solvers verify the 
fulfillment of conditions and implement actions through the ontological tree of the 
knowledge base. System-forming services provide message routing, integration, and 
user interface generation. Integration with HIS can be optimal (the doctor receives all 
information while at the workplace in HIS) or alternative (the doctor uses the CDSS 
user interface), depending on the support of HIS manufacturers. 

Explanations of CDSS decisions are implemented through mechanisms including 
traversing the knowledge base tree, formalized clinical interpretation of results, risk 
factors (corresponding to the analyzed case and serving as predictors), relative im-
portance of predictors, and risk factor phenotypes. These mechanisms facilitate physi-
cians' understanding of the proposed decisions and recommendations obtained from 
CDSS. Thus, the system ensures the explainability of artificial intelligence's operation 
and enhances the interaction between physicians and technologies. 



3.3 System Architecture  

The developed CDSS is based on hybrid technology with a distributed microservice 
architecture (see Fig. 1). The system's functionality is implemented through computa-
tional agents and knowledge bases with solvers. Expansion of CDSS functionality 
occurs by developing new microservices or updating the knowledge base. The dis-
tributed architecture and integration of knowledge bases, ontological solvers, and ma-
chine learning models ensure the flexibility of the CDSS. The main components of 
the CDSS include: 
1. System services: integration with HIS, request routing, including access to compu-

tational agents and the intelligent solver. 
2. Clinical medicine knowledge bases: formalized protocols, recommendations, ref-

erence materials, interpretation of prognostic models, and their application results. 
3. Computational agents (microservices): implementation of prognostic and diagnos-

tic machine learning models, algorithms for calculating event development proba-
bilities. 

4. Intelligent solver: verification of condition fulfillment and action implementation 
in accordance with the ontological tree of the knowledge base. 

5. Healthcare information system with EHR database. 
6. Electronic health records databases, including data for training and testing prog-

nostic models and research results. 
Machine learning models in the CDSS are developed based on intelligent data 

analysis and are grouped by tasks: classification for diagnosis and prediction; regres-
sion for clinical process modeling; clustering and phenotyping for associating patients 
with groups having similar disease progression characteristics. 

Model development includes statistical analysis, predictor selection and validation, 
training, cross-validation, and model testing, risk factor identification, phenotype 
formation, assessment of the relative contribution of predictors and their combinations 
to endpoint realization, and more. Models are developed based on data from HIS or 
external datasets. The connection between data and models is maintained for valida-
tion and retraining. As new data accumulate, validation, retraining, and implementa-
tion of new model versions occur. This process is applicable to machine learning 
models and formalized rules, as well as for verifying the effectiveness of clinical pro-
tocols and recommendations formalized in CDSS knowledge bases. Continuous vali-
dation and updating of models and knowledge is a recurring process, initiated when 
new labeled datasets accumulate. 

Explanation and interpretation of decisions made by the CDSS are essential condi-
tions for the system's effectiveness in clinical practice. To implement these approach-
es in the CDSS, two tasks must be addressed: 
1. Using explainable AI methods and interpretable machine learning for each prog-

nostic and diagnostic model in the CDSS, calculate threshold values of indicators 
with the highest predictive potential, form risk factor phenotypes that explain the 
development of adverse events, assess the contribution of each phenotype and in-
dividual risk factors to their realization, and explain deviations from phenotypes, 
among other things. 



 
Fig 1. Clinical decision support system high-level architecture. 

2. Store explanations and interpretations in a formalized form according to special-
ized ontology templates. 

3.4 Technologies 

Considering the above-described concept, the CDSS with a hybrid architecture inte-
grates various components in the IT space, using the Https protocol and JSON format 
for message and data exchange. The integration of the CDSS with the HIS can be 
performed in different ways, depending on the HIS's support for functional exten-
sions. The cloud platform IACPaaS [9] is used to manage knowledge bases containing 
formalized descriptions of models, recommendations, and explanations. Microservice 
interaction is organized through the Kubernetes (K8S) orchestrator (see Fig. 2).  



.  

Fig 2. Clinical decision support system low-level architecture. 

The system assumes simultaneous interaction with multiple clients using different 
HISs and located at a considerable distance from each other. The diagram represents 
edge-node pods in a simplified form (without separating microservices) and worker-
node pods in their entirety. The CDSS architecture includes a K8S cluster with three 
typical nodes: Master (responsible for cluster configuration and providing the API 



Gateway), Worker (hosts microservices with machine learning prognostic models), 
and Edge (a worker node located in the local network of a medical institution). The 
HIS server and client are implemented in the medical institution, while the IACPaaS 
server manages knowledge bases and includes a solver for traversing the formalized 
knowledge base tree. The K8S orchestrator ensures easy deployment and maintenance 
of containers with microservices. The control plane on the Master node is responsible 
for various functions, including API server management, pod scaling and manage-
ment, node management, configuration, access (authentication and authorization), 
network, monitoring, and logging. To enhance the CDSS performance, the K8S tool – 
Ingress is used, which provides traffic routing and load balancing in the cluster, al-
lowing the solution to scale as the number of requests increases. Cached computations 
are stored outside containers in Persistent Volume (PV) to improve performance. PV 
is an abstraction that allows allocating data storage space outside the pod but makes it 
accessible within the pod. Thus, the computation cache and updatable knowledge base 
are independent of the pod's life cycle. The CDSS prognostic models are implemented 
as microservices on worker nodes, combined into pods for computation execution, 
value interpretation, recommendation formation, and caching. The K8S orchestrator 
provides transparent scaling and load balancing between pods and microservices us-
ing Ingress. Scaling limitations are determined by available resources. 

The CDSS can be deployed in a public cloud or partially within a medical institu-
tion's network, where computations occur on the Edge node. A proxy service provides 
load balancing between instances of microservices. Such a configuration offers ad-
vantages: increased data exchange speed, prioritized utilization of computational 
power, and improved fault tolerance under unstable internet connection conditions. In 
the CDSS, typical microservice pods are provided: an informative pod – informs 
about available prognostic models and parameters; a mapping pod – converts HIS 
data to the predictive model format and vice versa; a prognostic model implementa-
tion service – includes computation, explanation, and recommendations; a routing 
service – distributes computations between Edge nodes and the cloud; and a solver 
pod – encompasses solver services, explanations, recommendations, and knowledge 
base synchronization. 

3.5 Workflow Scenario 

The primary algorithm of the system can be described as follows: 
1. The HIS server obtains a list of available prognostic models and parameters 

through the API Gateway. 
2. The physician selects a model and requests a prognosis or diagnosis evaluation. 
3. The HIS server retrieves data from the EHR database for model computations. 
4. The request is sent to the Edge node (if available) or to the cloud via the CDSS 

API to the corresponding API Gateway service (the entry point into the model 
pod) by the model name. 

5. The model's API service refers to the Data Mapper service via URL, which con-
verts the EHR data into model input parameters. The model's API service checks 
for a result in the cache. If the data is present, it returns them, otherwise it obtains 



the URL of the required services from the knowledge base and sends requests to 
the computing service of the predictive model, and after receiving calculations, to 
the Model Explanation service. 

6. The Model Explanation service, according to its configuration file, queries micro-
services of explanations known to it (XAI, knowledge-based model on the 
IASPaaS server, predictor importance calculation services) via URL. 

7. The service on the IASPaaS server provides explanations and recommendations 
from the intellectual knowledge base. 

8. The predictive model's API service caches the received data and provides them 
upon repeated request. 

9. The model's response is transformed for the HIS and returned along with addition-
al data. 

3.6 Ontologies of Predictive Models 

The ontology is used for the description of meta-information of machine learning pre-
dictive models in the knowledge base, accessing their implementation via a formal-
ized interface, interpreting the results of forecasts or diagnostics, and offering recom-
mendations. The ontology includes: 
1. The name of the service, its general description, and its correspondence to the ma-

chine learning predictive model; 
2. The service interface, including the URL address, input and output parameters, 

including risk factors (predictors in categorical form with threshold values); 
3. The permissible boundaries for the application of predictive models (restrictions 

on age, therapy, the presence or absence of a specific medical history, etc.); 
4. Reference values of input indicators (if they exist and if they differ from norma-

tive values when defined in the knowledge base of physiological indicators); 
5. Interpretation of the result (assessment of the likelihood of an adverse event); 
6. A set of recommendations for physicians and patients depending on the obtained 

result. 
The knowledge base of predictive models can be used for the selection of the cor-

responding model service, the formation of a correct request to it taking into account 
the permissibility of applying the model to the patient, and obtaining a result in the 
form of the likelihood of an adverse event. The latter is interpreted using the corre-
spondence of probability to the risk scale. For example, a probability from 1 to 3% 
corresponds to a low risk, from 3 to 5% - moderate, more than 5% - high, and above 
10% - to a very high risk according to the SCORE scale and its author's modification. 
Moreover, the model's predictors are compared with reference values described in the 
knowledge base, and taking into account the calculated probability, a recommenda-
tion for their correction towards reference values is generated. In addition, the system 
provides for the selection of recommendations corresponding to the calculated proba-
bility. 

Additional methods of interpreting the result provide for informing the physician 
about the threshold values of risk factors and their degree of influence on the endpoint 
(development of adverse events or the presence of a disease), which allows prioritiz-
ing the processes of reducing the risk of developing adverse events. 



4 Implementation Experience 

The development of a CDSS for the Medical Center of the Far Eastern Federal Uni-
versity (FEFU) involves several stages. In the first stage, a Minimum Viable Product 
(MVP) with a microservices architecture is developed without the use of K8S. The 
services are hosted on the FEFU server and integrated with the “1C Hospital” HIS. 
Physicians can select available prognostic models in the Electronic Health Record 
interface. The patient's history or outpatient card code is used as the primary index for 
the patient record and must be unique. 

Microservices for various prognostic models have been implemented, including 
those widely used in cardiology and cardiac surgery (SCORE, SCORE 2, GRACE, 
EuroSCORE II, Diamond-Forrester, etc.), as well as proprietary machine learning 
models for predicting in-hospital mortality and other cardiological indicators. The use 
of proprietary models allows for improving the accuracy of prognosis and diagnosis. 
For example, for the prediction of in-hospital mortality after coronary artery bypass 
grafting, the proprietary model has a quality metric - the area under the ROC curve 
(AUC) of 0.88, compared to 0.75 for the classic EuroSCORE II model. The accuracy 
of the proprietary pre-test evaluation of obstructive coronary artery disease is charac-
terized by an AUC of 0.83, compared to 0.65 for the modified Diamond-Forrester 
model.  Each model service is represented in the knowledge base with a description of 
input and output parameters, normative values, a URL link to the service, interpreta-
tions, and recommendations for physicians and patients, depending on the obtained 
results. 

For the specialists of the FEFU Medical Center, physician workstations and elec-
tronic documents have been developed within “1C” HIS. After performing calcula-
tions using prognostic models, the CDSS returns the model results, interpretation of 
the results, and recommendations for reducing the risk of adverse events for the pa-
tient.. 

5 Conclusion 

In the present study, the authors proposed a concept and architecture for a hybrid 
CDSS, integrating machine learning models and intelligent knowledge bases describ-
ing methods for assessing cardiovascular risks, their explanation, and recommenda-
tions for limitation. The microservices approach provides flexibility, scalability, and 
independence from hardware resources used. The application of Edge computing al-
lows for optimizing data processing and reducing server loads. The use of cloud tech-
nologies and service containerization ensures rapid system adaptation to changing 
conditions and the needs of medical institutions. Formalized knowledge bases with 
synonymy mechanisms help address the issue of using different terms in the HIS. The 
system is being developed using an iterative approach. In the subsequent stages, it is 
planned to expand the available pool of prognostic models, improve the architecture 
by using an orchestrator, and integrate with new HIS. The development experience of 
this system highlights the need for an interdisciplinary approach based on the cooper-



ation of specialists in information technology, machine learning, clinical medicine, 
and medical institution management. This is a key factor in creating innovative solu-
tions for implementing digital medicine projects.. 
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