
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Computational hydrodynamics in air flows modeling
Using the Unreal Engine based on the numerical solution of the Navier-Stokes equations

Pavel V. Yudin

Innovative projects promotion Department

Vladivostok State University of Economics and Service
Vladivostok, Russia

YudinPV@mail.ru, https://orcid.org/0000-0002-3405-9743

Evgeniy V. Strizh

Institute of Information Technology

Vladivostok State University of Economics and Service

Vladivostok, Russia

Strizh.evgeniy@gmail.com

Margarita I. Fedina

Institute of Information Technology

Vladivostok State University of Economics and Service

Vladivostok, Russia

Chyerra@yandex.ru

Olga V. Yudina

Research and Development Department

Planparaliya Ltd.
Vladivostok, Russia

Orvik80@mail.ru

Viktoria Khomotiuk

Technical Assistant

Sacramento, USA

Viktoriakhomotiuk@gmail.com

Abstract— Computational fluid dynamics (CFD) is a class of

methods of mathematical and computer modeling that is of great

scientific and practical importance for solving problems of

modeling the interaction of airflows. Airflows can be different in

temperature, density, and other physical parameters. CFD is

important in the design of climate control systems in industrial,

public buildings and premises, the design of life support systems

and firefighting.

Of particular importance is the problem of modeling the

distribution of air masses in premises with obstacles in the form

of equipment located in them, as well as in rooms of complex

configuration. The article proposes a combined modeling method

based on the numerical solution of the Navier-Stokes system of

equations. This algorithm is encapsulated in an application

created on the Unreal Engine platform - an environment for

computer simulation of 3D games. The novelty of the proposed

method is the use of the game "engine" to solve important

industrial problems in poultry, livestock, design of climate

systems. The article shows the possibilities for visualization of the

modeling process in the created software product.

Keywords—computational hydrodynamics, modeling of

airflows, Unreal Engine, Navier-Stoke equations, airflow

simulation, computational fluid dynamics, CFD

I. INTRODUCTION

The ability to maintain the temperature within certain
limits is an actual problem in many industries and spheres of
human activity. In production facilities where working
conditions are regulated or there is a threat of occupational
disease, the microclimate is especially important.

It is necessary to strictly regulate the microclimate in
enterprises where there are clear temperature requirements for
working conditions, non-observance of which will lead to
disruption of the production process, and subsequently, to
losses. The control of the indoor microclimate is especially
significant when performing works related to high or low
temperatures [27] - for example, in metalworking, agriculture,
food production, the chemical industry, aerospace industry,
firefighting, sports facilities, public buildings (offices,
shopping centers) and many others.

Improper production conditions can lead to serious
problems associated with the health of employees,
deterioration of equipment and facilities, disruption of the
production process [30]. The climate control of premises for
keeping farm animals, such as poultry and pigs, plays a
significant role since their productivity and the economic
efficiency of the production process rely on the well-being of
the animals' living environment.

Modeling the distribution of airflows that facilitate proper
gas and heat transfer in the house or barn, solves the problems
of equipment configuration in the design of agricultural
production facilities. [34, 35].

To manage the microclimate, enterprises spend a lot of
money on excessively high-quality ventilation systems. The
costs of their decisions can raise doubts since there is a good
chance that it would be possible to manage with lower capital
costs or by the proper distribution between climate control
systems.

To solve the problem associated with the right choice of
ventilation methods, one can resort to the use of software tools
for simulating the behavior of the air in the premises. Even

mailto:YudinPV@mail.ru
mailto:Orvik80@mail.ru

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

though the above method can reduce production costs, it is
used infrequently due to ignorance, unwillingness or lack of
suitable software. As part of this work, we will work on the
last aspect of this problem.

II. ACTUALITY

There are enough programs on the international market to
simulate airflow. All of them have pros and cons, but for the
most part, they are mathematical, not allowing the user to
control the interaction processes with different physical
characteristics of airflows: denser cold and more discharged
and saturated with humidity warm streams.

We focus on such a problem as the lack of suitable
software. This work is directed precisely at the solution. The
novelty of the work lies in combining software methods and
mechanisms. A subprogram that solves the system of Navier-
Stokes equations for modeling the characteristics of
temperature, density and airflow velocity by numerical
methods is encapsulated in a platform for creating 3D gaming
applications - the Unreal Engine program. Unreal Engine
allows simulating the key relationships within the flows and
between adjacent air mass flows, taking into account the
configuration of the 3D model of the room and airflow sources
(supply and exhaust ventilation), distributed by the user
arbitrarily inside the model. The resulting software product
will help to determine the choice of a ventilation system for
the premises. It will help to make the right choices and avoid
problems and losses associated with the wrong indoor climate,
which is caused by an improperly selected ventilation system.

III. FORMULATION OF A PROBLEM

The main objective of the project is to create a software
product that is an application software for simulating the
behavior of air flows in confined spaces, with the help of
Unreal Engine platform. The result of the work is a fully
functioning program that has all the necessary functionality,
for example, tracking air characteristics in the visual interface.

To achieve the result we need:

• to create a base of theoretical materials for the
development of the program;

• to conduct a search and analysis of analog programs;

• in the process of creation of the program, to study and
use a set of methods of computational fluid dynamics;

• to study the basic differential Navier-Stokes equations
for modeling viscous Newtonian fluid (air mass flows)
and to study methods for their solution;

• to find a suitable method for modeling the Navier-
Stokes equation;

• to implement the algorithm for the programmatic
numerical solution of the Navier-Stokes equation to
further include this subprogram into the architecture
of the main program;

• to do modeling and visualization of airflow in
enclosed spaces in the Unreal Engine environment.

The functioning software obtained as a result of the
development will simulate the air flows in the premises, based
on the numerical solution of the original system of Navier-
Stokes differential three-dimensional equations. It will help to
design the ventilation system under the given parameters and
the necessary air distribution system.

IV. THEORETICAL BASE

Computational fluid dynamics (CFD) is a combination of
many different theoretical, experimental and numerical
methods that are designed to simulate the flow of liquids and
gases, their heat transfer and mass exchange, reactive flows
and other elements associated with them [3]. It also includes
physical and mathematical methodology. The basis of any
study in the field of computational fluid dynamics is the
formulation of basic equations of fluid dynamics or gas
dynamics [20, 21]. In this case, four main equations can be
distinguished, namely:

• the continuity equation;

• the equation of conservation of momentum;

• energy conservation equation;

• equation of state (for gases).

The above equations describe a model of the flow of a
medium. Depending on the features of the problem being
solved, the model can be supplemented with equations to take
into account turbulence, transport of substances, chemical
reactions, multiphase nature, electromagnetic interactions, and
other points as necessary. The system of nonlinear differential
equations of the second-order is composed of all the above
equations [7]. There is a wide list of tasks that can be solved
with the help of computational fluid dynamics methods by
using commercial programs:

Automotive industry:

• determination of the resistance level of the main body
of the vehicle to the moving airflow;

• interior ventilation;

• ventilation of the engine compartment;

• fuel combustion design.

Aerospace industry:

• detailed modeling of airflow around missiles and
aircraft;

• fire safety of the cabin of flying vehicles;

• modeling of physical and chemical phenomena in
turbojet engines;

• modeling and design of turbines.

Technological processes for the manufacture of materials:

• design of plastic and metal molding;

• modeling of biological and chemical processes in
reactors.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Production:

• designing the work of freezers;

• designing the operation of ventilation systems.

Construction:

• accurate calculation of wind loads on structures;

• design of ventilation and air vents in the buildings;

• determination of possible resistances of air ducts and
water distribution devices.

Energetics:

• accounting of burners for burning fuel in boilers;

• calculations of nitrogen oxide emissions by boilers.

Climate control in premises:

• modeling the behavior of airflows in the room and
calculating temperatures and humidity levels;

• calculation for the selection of ventilation equipment in
industrial premises.

Agriculture:

• designing the operation of ventilation systems in
buildings for growing and keeping farm animals and
poultry;

• calculations for the selection of ventilation equipment
in meat processing industrial premises.

Computational fluid dynamics methods are used not only
in commercial projects and industry but also in science and
other industries [16]. For example, making weather
simulations or using simulations in environmental
engineering.

In general, computational hydrodynamics carries a
significant role in the development of the modern technical
world. Also, the application of this direction in physics is
extremely important in emergencies, since through its methods
it is possible to simulate the directions of the spread of
pollution in the water and air and prevent the spread of fires in
forests and cities [6, 7, 8]. One of the most important
equations in hydrodynamics are the Navier - Stokes equations,
which are a system of partial differential equations. It is with
their help that one can describe the motion of the viscous
Newtonian fluid, as well as non-discharged gases [24].

A Newtonian fluid is a viscous fluid that obeys Newton’s
viscous friction law, that is, its tangential stress and velocity
gradient are linearly dependent. The proportionality
coefficient between these values is known as viscosity. The
viscosity of such a fluid depends only on pressure and
temperature. The viscosity of a non-Newtonian fluid is
velocity-dependent [25].

The Navier-Stokes equations are used in mathematical
modeling of many natural phenomena and technical problems.
The system consists of two equations: equation of motion and
equation of continuity. In hydrodynamics, the only one vector

equation of motion is usually called the Navier – Stokes
equation [28].

In the vector form for a liquid, it is written as follows:

𝜕𝑉
→

𝜕𝑡
= −(𝑉

→

𝛻)𝑉
→

+𝑉∆𝑉
→

−
1

𝜌
𝛻𝑃 + 𝑓

→

 (1)

Where 𝛻 - the Hamilton operator;

∆ - Laplace operator,

𝑉
→

 - velocity vector,

𝑡 – time,

𝑉 - kinematic viscosity coefficient,

𝜌 – density,

𝑝 – pressure,

𝑓
→

 - vector of density of mass forces.

Sometimes, in the case of an incompressible fluid, the
continuity equation is called the incompressibility equation,
and in the case of a compressible fluid, continuity equation
[10]. The solution to the Navier-Stokes equation is the
velocity at each point in the space. Based on the obtained
velocity field, pressure or temperature can be calculated.
Depending on the tasks, other equations are added to the
equation, for example, the heat equation, or vice versa, some
variables are not taken into account, and various assumptions
are made. For example, the introduction of the Lawrence force
and the Maxwell equation will allow the Navier-Stokes
equation to describe the phenomenon of electrohydrodynamics
and magnetohydrodynamics, as well as quite successfully
simulate the behavior of plasma and interstellar gas. The
problem of solving the Navier-Stokes equation is the lack of
analytical solutions. The proof or refutation of the existence of
an exact solution to the Cauchy problem for the three-
dimensional Navier-Stokes equation is one of the “millennium
problems” [22, 23].

Programs that simulate airflows and use computational
fluid dynamics have been existing for many years. To create
our unique and competitive product, we conducted a search
and analysis of analog programs [2, 4, 9]. In a general analysis
of a group of programs with computational fluid dynamics,
five characteristics can be distinguished related to the qualities
and functionality of the software [6, 17]. These are the
presence or absence of open source code, a shell, a specialized
focus, the possibility of integration with an automatic design
system (with a system of automatic projecting), and a
combination of all the above characteristics in one
comprehensive package. Programs such as AltairAcuSolve,
ADINA, SolidWorks Flow Simulation, Autodesk CFD,
OpenFOAM were investigated for capabilities. As a result, the
main functions of analog programs for inclusion in our
software product were highlighted.

When designing software, the following questions arose:

• What programming language to use for writing a
program?

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

• What software environment to use for visualization?

To accomplish our tasks, we need an environment with
good visualization, with the ability to create a convenient user
interface for viewing parameters, and the ability to easily
create a virtual world for modeling. As systems that are
completely suitable for us, we chose game programming
systems, since they were developed to create virtual worlds, as
well as physical interaction and object behavior. The system
must support three-dimensional graphics. Among the
programs that suit us according to the above criteria, our
project team identified Unreal Engine, Unity 3D and
CryEngine [11, 15, 31, 32]. Their pros and cons are presented
in table 1.

TABLE I. GAME DEVELOPMENT ENVIRONMENT

System

name

Programming

language

Pros Cons

Unreal

Engine

С++ High-quality editor with

great functionality.

Visual Programming

System Blueprints.

Full access to the source

code.

Better visualization

compared to

competitors

Scanty

documentation

Slow compilation

speed.

The system is

difficult to learn.

Unity 3D С# High compilation speed.

Good documentation.

The system is easy to

learn.

Do not have access

to the source code.

CryEngine C++ Good visualization.

Full access to source

code.

Many errors in the

engine code.

Poor quality

documentation.

As a result, we chose the Unreal Engine system as the
most suitable for our tasks. Unreal Engine is a game software
environment developed and supported by Epic Games [32].

As soon as we chose a development system, the question
of choosing a programming language for writing code
disappeared, since the Unreal Engine supports only C ++ code
as an embedded code. This language has a high speed of
calculating mathematical actions, which is very important for
us.

In our program, to determine the behavior of particles, we
use the Navier-Stokes equation already mentioned. In the
numerical solution of the differential equation, the Euler
method is used [1, 14]. In this method, to find the speed at the
current time, the speed at the previous time is used. Space is
divided into cells, each cell contains the speed value, the
calculation for each cell is carried out separately.

To determine the particle motion, we use the algorithm
that we developed for solving the Navier-Stokes equation [19].
Based on this algorithm, we have developed a library that
performs basic mathematical operations for calculating vectors
[18]. For visualization, we made a program that in a simplified
form shows the distribution of particles in space. The speed
spreads around the surrounding cells as follows: each cell

exchanges with neighboring cells with a certain amount of
speed, which depends on the value of viscosity or diffusion.
The velocity transfer in the vertical direction can be
represented as the displacement of the velocity value along the
velocity vectors.

As a result of these calculations, the continuity equation
will be violated [5]. To save it, you must use the property of
the vector field. Every such field can be represented as the
sum of the gradient and solenoidal fields [12]. As a result, the
potential field needs to be subtracted from the current field to
get an incompressible field.

The algorithm was written in C ++, and visualization in the
program was done with such a tool as an open library.

We decided to make a subprogram that calculates the
behavior of airflow, and built-in this subprogram into Unreal.
The program was integrated into the development
environment.

We had a choice of objects built into the game
development system by engineers, and we tried to decide
which of them to use for creation the objects simulating an air
environment. Table 2 presents the approaches for creating
objects:

TABLE II. PROS AND CONS OF TYPES FOR CREATING PARTICLES

Approach

name

Pros Cons

Particle

System

Better visualization of air flows,

as the system is a collection of

particles

Huge resource cost.

Inability to control each

particle and set its

characteristics.

Pawn class

object

The ability to easily change the

external part, by changing the

material

A wide range of built-in functions

and systems

The ability to create properties of

particles and change them

Not the best

visualization since it is

necessary to combine

the volume of air in the

large particles and

manage them

Basing on the comparison table, we decided to create
particles as objects of the Pawn class with the control class
Controller. After creating the particles and the logic of their
behavior, it was necessary to create objects that generate and
distribute airflows indoors, in our case, this is a ventilation
system. We also created a 3D model of the room for testing
the program.

V. PRACTICAL SIGNIFICANCE, PROPOSALS AND RESULTS OF

EXPERIMENTAL STUDIES

The software implementation began in parallel with the
research. At the same time, a subroutine was created using the
Navier-Stokes system of equations in the Code:: Blocks
environment, and a framework for the main program was
created in the Unreal Engine environment.

In our program, to determine the behavior of particles, we
use the Navier-Stokes equation that already mentioned. In the
numerical solution of the differential equation, the Euler
method is used, in which to find the speed at the current time,

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

the speed at the previous time is used [13, 14, 24, 28]. This
method was chosen due to the high speed of its calculation.

For writing the program, the C ++ programming language
was used. The program can be divided into two modules. The
first module performs calculations to find the speed values.
The second one uses the results for visualization, and also
performs user interaction. To create a window application and
visualization, free libraries, Freeglut and OpenGL, were used.

As shown in Fig.1, a space of size N ^ 3 is divided into
cells, each cell is described using density and velocity in three
dimensions: u, v, w.

Fig. 1. Representation of space

Each cell exchanges a certain amount of speed with its
neighbors, so the speed spreads in the system.

The input data for the program are the resolution of the
space grid, time step, diffusion, viscosity, the value of the
velocity added by the user, and the amount of substance.
Arrays are also created to store density and velocity values in
three directions for two points in time.

Since the three-dimensional arrays of elements have been
initialized as one-dimensional, for easy access to the elements,
macro was used (Listing 1).

LISTING 1. ONE-DIMENSIONAL ARRAY INITIALIZATION

#define IX3(i,j,k) ((i)+(N+2)*(j)+(N+2)*(N+2)*(k))

Also, a macro was used to change variables in places
(Listing 2).

LISTING 2. CHANGE VARIABLES PROCEDURE.

#define SWAP(x0,x) {float * tmp=x0;x0=x;x=tmp;}

Fig. 2 shows the flow rate calculation scheme.

Fig. 2. Calculation of the flow rate

The velocity field is calculated using the vel_step function
(Listing 3).

LISTING 3. VELOCITY FIELD CALCULATION

void vel_step (int N, float * u, float * v, float * w,

float * u0, float * v0, float * w0, float visc, float dt)

{

 add_source (N, u, u0, dt);

 add_source (N, v, v0, dt);

 add_source (N, w, w0, dt);

 SWAP (u0, u); diffuse3d (N, 1, u, u0, visc, dt);

 SWAP (v0, v); diffuse3d (N, 2, v, v0, visc, dt);

 SWAP (w0, w); diffuse3d (N, 3, w, w0, visc, dt);

 project3d (N, u, v, w, u0, v0);

 SWAP (u0, u);

 SWAP (v0, v); SWAP (w0, w);

 advect3d (N, 1, u, u0, u0, v0, w0, dt);

 advect3d (N, 2, v, v0, u0, v0, w0,dt);

 advect3d (N, 3, w, w0, u0, v0, w0,dt);

 project3d (N, u, v, w, u0, v0);

}

The density is calculated using the dens_step function
(Listing 4).

LISTING 4. DENSITY CALCULATION

void dens_step (int N, float * x, float * x0, float * u,

float * v, float * w, float diff, float dt)

{

 add_source (N, x, x0, dt);

 SWAP (x0, x); diffuse3d (N, 0, x, x0, diff, dt);

 SWAP (x0, x); advect3d (N, 0, x, x0, u, v, w, dt);

}

The add_source function, using the interface, adds the
values added by the user to the current density and speed
indicators (Listing 5).

LISTING 5. DENSITY AND SPEED CHANGING

void add_source (int N, float * x, float * s, float dt)

{

 int i, size=(N+2)*(N+2)*(N+2);

 for (i=0 ; i<size ; i++) x[i] += dt*s[i];

}

Diffusion can be represented as the exchange of each cell
with an adjacent amount of velocity or density, depending on
the value of viscosity or diffusion (2).

 𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝜈(𝑢𝑖+1
𝑛 +𝑢𝑖−1

𝑛 − 𝑘𝑢𝑖
𝑛), (2)

Where 𝑢 is the value of speed or density,

n – time step,

i – cell number,

𝜈 – diffusion coefficient,

k – number of neighboring cells.

Fig.3 shows such an exchange for one direction:

Fig. 3. The scheme of exchange between cells

However, such a formula (2) is unstable [26]. Therefore,
the inverse Euler method is used to find the desired value (3),
(4).

 𝑢𝑖
𝑛 = 𝑢𝑖

𝑛+1 − 𝜈(𝑢𝑖+1
𝑛+1+𝑢𝑖−1

𝑛+1 − 𝑘𝑢𝑖
𝑛+1) (3)

 𝑢𝑖
𝑛+1 = (𝑢𝑖

𝑛 + 𝜈(𝑢𝑖+1
𝑛+1+𝑢𝑖−1

𝑛+1))/(1 + 𝑘𝑣), (4)

Where 𝑢 – speed or density value,

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

n – time step,

i – cell number,

𝜈 – diffusion coefficient,

k – number of neighboring cells.

The distribution of matter and velocity through the
surrounding cells occurs in the diffuse3d function (Listing 6):

LISTING 6. THE DISTRIBUTION OF MATTER AND VELOCITY

void diffuse3d (int N, int b, float * x, float * x0, float

diff, float dt)

{

 float a=dt*diff*N*N*N;

 lin_solve3d (N, b, x, x0, a, 1+6*a);

}

void lin_solve3d (int N, int b, float * x, float * x0,

float a, float c)

{

 int i, j, k,l;

 for (l=1 ; l<=4 ; l++) {

 for (i=1 ; i<=N ; i++) {

for (j=1 ; j<=N ; j++) {

for (k=N ; k>1 ; k--) {

x[IX3(i,j,k)] = (x0[IX3(i,j,k)] + a*(x[IX3(i-1,j,k)] +

x[IX3(i+1,j,k)] + x[IX3(i,j-1,k)] +

x[IX3(i,j+1,k)]+x[IX3(i,j,k-1)]+x[IX3(i,j,k+1)]))/c;

 }}}

}

 set_bnd (N, b, x);

}

Advection can be represented as a displacement of a
substantial value along velocity vectors. Euler schemes for
calculating the advection equation are unstable; therefore, the
semi-Lagrangian approach was used. In contrast to the
Lagrangian approach, where the finite trajectories of particles
are distributed irregularly, in the semi-Lagrangian approach,
the final trajectories will lie at the grid nodes [29]. Using
formulas (5), (6), (7), the value of d is calculated, which
moves along the velocity field u (Listing 7).

 𝑥н = 𝑥𝑖 − ∆𝑡𝑢𝑖, (5)

 𝛼 = 𝑥н − 𝑥𝑗, (6)

 𝑑𝑖
𝑛+1 = (1 − 𝛼)𝑑𝑗

𝑛 + 𝛼𝑑𝑗+1
𝑛 , (7)

Where 𝑥н – coordinate of the starting point of the
trajectory on the interval [j, j + 1]

𝑥𝑖 – coordinate of the desired cell,

i, j – cell numbers,

∆𝑡 – time interval,

𝑢𝑖 – speed in the desired cell,

𝑑 – density or speed value,

n – time step.

The location of these values is shown in Fig.4.

Fig. 4. Location of quantities

LISTING 7. THE CALCULATION OF THE ADVECTION EQUATION

void advect3d (int N, int b, float * d, float * d0, float

* u, float * v, float *w, float dt)

{

 int i, j,k, i0, j0, i1, j1,k0,k1;

 float x, y,z, s0, t0, s1, t1,p0,p1, dt0;

 dt0 = dt*N;

 for (i=1 ; i<=N ; i++) {

 for (j=1 ; j<=N ; j++) {

 for (k=1 ; k<=N ; k++) {

 x = i-dt0*u[IX3(i,j,k)]; y = j-dt0*v[IX3(i,j,k)];z

= k-dt0*w[IX3(i,j,k)];

 if (x<0.5f) x=0.5f; if (x>N+0.5f) x=N+0.5f;

i0=(int)x; i1=i0+1;

 if (y<0.5f) y=0.5f; if (y>N+0.5f) y=N+0.5f;

j0=(int)y; j1=j0+1;

 if (z<0.5f) z=0.5f; if (z>N+0.5f) z=N+0.5f;

k0=(int)z; k1=k0+1;

 s1 = x-i0; s0 = 1-s1;

 t1 = y-j0; t0 = 1-t1;

 p1 = z-k0; p0 = 1-p1;

 d[IX3(i,j,k)] =

p0*(s0*(t0*d0[IX3(i0,j0,k0)]+t1*d0[IX3(i0,j1,k0)])+

+s1*(t0*d0[IX3(i1,j0,k0)]+t1*d0[IX3(i1,j1,k0)]))+

+p1*(s0*(t0*d0[IX3(i0,j0,k1)]+t1*d0[IX3(i0,j1,k1)])+

+s1*(t0*d0[IX3(i1,j0,k1)]+t1*d0[IX3(i1,j1,k1)]));

}}}

 set_bnd (N, b, d);

}

As a result of all these calculations, the continuity equation
will be violated for the velocity field. To maintain the
continuity condition, the vector field characteristic is used.
Any vector field can be represented as the sum of the potential
(gradient) and solenoidal (vortex) fields [33].

The divergence of the solenoidal field is zero, that means
that this field corresponds to the continuity condition.

Thus, to obtain a vortex field, we need to find the field
gradient, and then subtract it from the current field (Listing 8).

LISTING 8. THE FIELD GRADIENT FINDING

void project3d (int N, float * u, float * v,float* w,

float * p, float * div)

{

 int i, j,k;

 for (i=1 ; i<=N ; i++) {

for (j=1 ; j<=N ; j++) {

for (k=N ; k>1 ; k--) {

 for (k=1 ; k<=N ; k++) {

 div[IX3(i,j,k)] = (u[IX3(i+1,j,k)] - u[IX3(i-

1,j,k)] + v[IX3(i,j+1,k)] - v[IX3(i,j-1,k)] +

w[IX3(i,j,k+1)] - w[IX3(i,j,k-1)]) / (-3.f) /N;

 p[IX3(i,j,k)] = 0;

 }

 }

}

 set_bnd (N, 0, div); set_bnd (N, 0, p);

 lin_solve3d (N, 0, p, div, 1, 6);

 for (i=1 ; i<=N ; i++) {

for (j=1 ; j<=N ; j++) {

 for (k=1 ; k<=N ; k++) {

 u[IX3(i,j,k)] -= N*(p[IX3(i+1,j,k)]-p[IX3(i-

1,j,k)])/2.f;

 v[IX3(i,j,k)] -= N*(p[IX3(i,j+1,k)]-p[IX3(i,j-

1,k)])/2.f;

 w[IX3(i,j,k)] -= N*(p[IX3(i,j,k+1)]-p[IX3(i,j,k-

1)])/2.f;

 }

}

}

 set_bnd (N, 1, u); set_bnd (N, 2, v);set_bnd (N, 3,

w);

}

Next, we determine the interaction of particles with the
boundaries of space. The behavior of the velocity in the
boundary conditions is shown in Fig. 5 and Listing 9.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Fig. 5. Speed in boundary conditions

LISTING 9. THE BEHAVIOR OF THE VELOCITY IN THE BOUNDARY CONDITIONS

void set_bnd (int N, int b, float * x)

{

 int i,j;

 for (i=1 ; i<=N ; i++) {

 for (j=1 ; j<=N ; j++) {

x[IX3(0 ,i,j)] = b==1 ? -x[IX3(1,i,j)] : x[IX3(1,i,j)];

x[IX3(N+1,i,j)] = b==1 ? -x[IX3(N,i,j)] : x[IX3(N,i,j)];

x[IX3(i,0 ,j)] = b==2 ? -x[IX3(i,1,j)] : x[IX3(i,1,j)];

x[IX3(i,N+1,j)] = b==2 ? -x[IX3(i,N,j)] : x[IX3(i,N,j)];

x[IX3(i,j ,0)] = b==3 ? -x[IX3(i,j,1)] : x[IX3(i,j,1)];

x[IX3(i,j,N+1)] = b==3 ? -x[IX3(i,j,N)] : x[IX3(i,j,N)];

}

x[IX3(i ,0,0)] = (x[IX3(i,1,0)]+x[IX3(i,0,1)])/2;

x[IX3(i ,N+1,0)] = (x[IX3(i,N,0)]+x[IX3(i,0,1)])/2;

x[IX3(i ,0,N+1)] = (x[IX3(i,1,N+1)]+x[IX3(i,0,N)])/2;

x[IX3(i ,N+1,N+1)] = (x[IX3(i,N,N+1)]+x[IX3(i,N+1,N)])/2;

x[IX3(0 ,i,0)] = (x[IX3(1,i,0)]+x[IX3(0,i,1)])/2;

x[IX3(N+1,i,0)] = (x[IX3(N,i,0)]+x[IX3(N+1,i,1)])/2;

x[IX3(0 ,i,N+1)] = (x[IX3(1,i,N)]+x[IX3(0,i,N)])/2;

x[IX3(N+1,i,N+1)] = (x[IX3(N,i,N+1)]+x[IX3(N+1,i,N)])/2;

x[IX3(0 ,0,i)] = (x[IX3(1,0,i)]+x[IX3(0,1,i)])/2;

x[IX3(0 ,N+1,i)] = (x[IX3(1,N+1,i)]+x[IX3(0,N,i)])/2;

x[IX3(N+1,0,i)] = (x[IX3(N,0,i)]+x[IX3(N+1,1,i)])/2;

x[IX3(N+1, N+1,i)] = (x[IX3(N,N+1,i)]+x[IX3(N+1,N,i)])/2;

 }

x[IX3(0 ,0 ,0)] = (x[IX3(1 ,0 ,0)]+x[IX3(0 ,1,0

)]+x[IX3(0 ,0 ,1)])/3;

x[IX3(0 ,0 ,N+1)] = (x[IX3(1 ,0 ,N+1)]+x[IX3(0

,1,N+1)]+x[IX3(0 ,0,N)])/3;

x[IX3(0 ,N+1,0)] = (x[IX3(1 ,N+1,0)]+x[IX3(0 ,N,0

)]+x[IX3(0 ,N+1,1)])/3;

x[IX3(0 ,N+1,N+1)] = (x[IX3(1,N+1,N+1)]+x[IX3(0

,N,N+1)]+x[IX3(0 ,N+1,N)])/3;

x[IX3(N+1,0 ,0)] = (x[IX3(N ,0 ,0)]+x[IX3(N+1,1,0

)]+x[IX3(N+1,0 ,1)])/3;

x[IX3(N+1,0 ,N+1)] = (x[IX3(N ,0

,N+1)]+x[IX3(N+1,1,N+1)]+x[IX3(N+1,0 ,N)])/3;

x[IX3(N+1, N+1, 0)] = (x[IX3(N , N+1, 0)] + x[IX3(N+1

,N, 0)] + x[IX3(N+1, N+1, 0)]) /3;

x[IX3(N+1,N+1,N+1)] = (x[IX3(N, N+1, N+1)] + x[IX3(

N+1,N , N+1)] + x[IX3(N+1, N+1, N)])/3;

}

After completing the work on software aimed on solving
the Navier-Stokes system of equations by numerical methods,
it was implemented in the main program.

Unreal Engine is a software environment in which the
ability to inherit classes is implemented. The Actor object acts
as the parent class (base). This object can be of any object
(located in the scene) with which other classes are combined,
which, in turn, act as derived classes, that is, they inherit
various methods from the base. They also include the Pawn
class. Most of all in this class we are interested in is its
functionality, namely, the ability to control it through another
Controller class. This feature allows the Controller class to
pass information to the Pawn class, thereby controlling its
behavior.

Particles of the Pawn class were created in our program.
Then these particles were endowed with properties created
based on the basic characteristics of the air environment,
namely temperature, density, and humidity. This data are
presented as floating-point numbers. A programming panel
with these variables is shown in Fig. 6.

.

Fig. 6. Panel with variables in Unreal Engine

After that, a program was integrated into the software
created in the Unreal Engine environment, inside of which a
calculation algorithm was programmed. This algorithm is
aimed at finding numerical solutions of the Navier-Stokes
system of equations. The code section from the subroutine
responsible for diffusion and advection and calculating the
equations of motion for three-dimensional space is shown in
Fig.7.

Fig. 7. Part of the code responsible for diffusion and advection

The following algorithm is executed in the subroutine:

• a three-dimensional array is created;

• an air particle is placed in each cell of the array;

• the velocity vector is calculated for each particle based
on its current characteristics. In this case, the particles
surrounding it are also taken into account.

The subroutine receives input data arrays with current
values of the characteristics of the particles.

The output data of the subroutine are data arrays with
finite vectors, that were obtained as a result of the above
algorithm. After that, the data obtained are assigned to the
particles in the form of a pulse.

ui

vi

-vi

ui

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

The originally created subroutine performed calculations
in 2D form. In the same format, it also performed
visualization, that, in turn, could work in two modes: density
display mode and velocity field display mode. After
painstaking work with the code, the system was able to be
converted into 3D format. But the subroutine worked with
some inaccuracies. The program code was gradually refined,
and the accuracy of calculations and visualization improved.
Fig.8 shows the visualization of speed in the form of a vector
field.

Fig. 8. The final version of the visualization in 3D format (speed field

display mode)

Code for drawing vectors:

LISTING 10. VECTORS DRAWING

glVertex3f (x, y ,-z);

glVertex3f (x+u[IX3(i,j,k)], y+v[IX3(i,j,k)],-

(z+w[IX3(i,j,k)]));

The density display mode of the final version of the
program is shown in Fig.9.

Fig. 9. The final version of visualization in 3D format (density display mode)

Density is drawn in the form of white planes that forms
multiple cubes. The transparency at the nodes of the cube
depends on the values of the calculated density. To test the

program, a 3D model of the room was created. For realism,
scaling was performed during its construction. The model was
created directly in the Unreal Engine. Fig.10 shows the created
model of the room for poultry-breeding production [35].

Fig. 10. 3D model of the room

The user’s interaction with the software, at the moment, is
done through a text block, where the user can enter a number
that is responsible for the temperature of the air entering the
room via the ventilation system. Fig. 11 shows the mapping of

airflow particles in an Unreal Engine environment.

Fig. 11. Display of airflow particles in the Unreal Engine environment

The program user can set the initial air temperature. If it
was not done, the temperature is set by default to 16 degrees
Celsius. Also, there were implemented the visualization for
the exchange of airflows particles by physical characteristics
and the visualization for the airflows around objects inside a
room model. Interface management is carried out with the use
of keyboard and mouse. Using the right mouse button, density
is added; and using the left mouse button, a speed pulse is
created. The cube can also be rotated using the keys. The
program can switch between two display modes: density and
velocity field.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

VI CONCLUSION

Modeling allows predicting the behavior of objects in the
system, obtaining new data on the properties of the object, and
simplifies the systematization of the data known. At present,
the creation of a proper indoor microclimate is important in
various spheres of human life and industries. One of the ways
to control the microclimate in enclosed space is to regulate the
temperature and speed of the airflow in supply, exhaust
ventilation or control airflow from air conditioning systems.
This work aims to create an application program for modeling
the behavior of airflows in industrial premises. To complete
the work and achieve our goal, we:

• studied the software that available on the market and
appropriate for simulating the behavior of airflows;

• studied the physical and mathematical formulas and
laws associated with the behavior of air, for their
implementation in software;

• implemented software for the numerical solution of
the Navier-Stokes system of equations;

• studied and mastered the Unreal Engine application
software;

• modeled and combined software aimed at solving the
Navier-Stokes system of equations with a program
implemented in Unreal Engine;

• established the interaction of objects with the outside
world and among themselves based on the Unreal
Engine environment.

In the result of our work, we created application software
for simulation of airflows in enclosed spaces that can be
effectively used in various fields of the economy.

We plan to continue the development of the program. At
the next stage, we will implement more accurate relationships
between airflow particles and the environment, as well as
introduce functions related to pressure and humidity into the
program, and develop more convenient user interface.

ACKNOWLEDGMENT

P.V.Y. thanks to Sergei V. Menschikov and Svetlana V.
Parshkova for the cooperation in research and for assistance in
providing technical documentation.

REFERENCES

[1] “Adams method”, https://www.cfd-online.com/Wiki/Adams_methods.

[2] “ADINA”, http://www.adina.com/

[3] “ANSYS CFD – Computational fluid dynamics”, CADFEM,

https://www.cadfem-cis.ru/products/ansys/fluids/

[4] “Catalogue. SolidWorks Flow Simulation”,

https://www.syssoft.ru/SolidWorks/SolidWorks-Flow-Simulation/

[5] “Cauchy momentum equation”,

https://en.wikipedia.org/wiki/Cauchy_momentum_equation.

[6] “Comparing CFD Software. RESOLVED analytics”,

https://www.resolvedanalytics.com/theflux/comparing-cfd-software.

[7] “Computational fluid dynamics”,

https://en.wikipedia.org/wiki/Computational_fluid_dynamics.

[8] “Computational fluid dynamics. Handbook24”,
https://spravochnick.ru/fizika/mehanika_sploshnyh_sred/vychislitelnaya

_gidrodinamika/

[9] “Computational Fluid Dynamics Solver – Altair AcuSolve”,

https://altairhyperworks.com/product/acusolve.

[10] “Continuity equation”, https://en.wikipedia.org/wiki/Continuity

_equation

[11] “CryEngine”, https://ru.wikipedia.org/wiki/ CryEngine.

[12] “Elements of field theory. Mathematical analysis”,

http://www.314159265.ru/images/MA_conspects/Field_theory.pdf.

[13] “Equation of motion of a continuous medium”,

https://en.wikipedia.org/wiki/Cauchy_momentum_equation.

[14] “Euler method”, https://en.wikipedia.org/wiki/Euler_method

[15] “FAQ: Licensing and activation. Unity”.

https://unity3d.com/ru/unity/faq/2491.

[16] “Features of the numerical modeling of air flows in concert and theatre

halls”, http://mm-technologies.ru/wp-content/uploads/2016/12/
osobennosti-chislennogo-modelirovaniya-povedeniya-vozdushnyx-

potokov-v-obemax-koncertnyx-i-teatralnyx-zalov.pdf.

[17] “Fluid simulation. Computer science”,

https://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf.

[18] “Freeglut”, https://ru.wikipedia.org/wiki/Freeglut.

[19] S.N. Kharlamov, “Algorythms in modelling the hydrodynamics

processes”, Tomsk, 2008, p.80.

[20] G.Lamb, “Hydrodynamics”, Russia, Moscow, 1947, http://log-

in.ru/books/lamb-g-gidrodinamika-lamb-g-nauka-i-obrazovanie/

[21] L.D.Landau, E.M.Lifshitz, “Hydrodynamics”, Moscow, 1986,

https://www.twirpx.com/file/891058/

[22] “Lecture 13. Numerical solution of differential equations’,

https://toehelp.ru/theory/informat/lecture13.html.

[23] “Millennium Prize Problems—Navier–Stokes Equation”, Clay
Mathematics Institute, http://www.claymath.org/millennium-

problems/navier–stokes-equation.

[24] “Navier-Stokes equations”, https://en.wikipedia.org/wiki/Navier–

Stokes_equations.

[25] “Newtonian fluid”, https://en.wikipedia.org/wiki/Newtonian_fluid.

[26] “Real-Time Fluid Dynamics for Games. Dynamic Graphics Project”,

http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.p

df.

[27] Sanitary Regulations and Norms of Russia. Hygienic requirements for
microclimate of industrial premises,

http://docs.cntd.ru/document/901704046

[28] L.I.Sedov, “Continuum mechanics”, Moscow, Science, 1970,

https://www.twirpx.com/file/67973/

[29] M.A.Tolstykh, “Semi-Lagrangian method”, Siberian center for

Environmental Research and Training,
http://www.scert.ru/conferences/cites/2007/presentation/Presentation/Sc

hool/tolstykh.pdf.

[30] O.G. Turovets, “Organization of production and management. Manual”,

Moscow, 2007, p. 544.

[31] «Unity3D. Start of work, practical advices. Review”,

https://habr.com/ru/post/161463/

[32] «Unreal Engine», https://ru.wikipedia.org/wiki/Unreal_Engine

[33] Y.M.Volchenko, “Potentiality and solenoidality”, Maths for technical

universities, https://math.volchenko.com/Lectures/PotField.pdf.

[34] P.V.Yudin, “Environmental resource saving biogas production for the
poultry breeding farm on the example of “Mikhailovsky broiler”, DOI:

10.1109/EastConf.2019.8725381.

[35] P.V.Yudin, “The math and economy methods improvement in calendar
planning for the poultry production”, research dissertation, Vladivostok,

Russia, 2004.

http://www.adina.com/
https://www.cadfem-cis.ru/products/ansys/fluids/
https://www.syssoft.ru/SolidWorks/SolidWorks-Flow-Simulation/
https://en.wikipedia.org/wiki/Cauchy_momentum_equation
https://www.resolvedanalytics.com/theflux/comparing-cfd-software
https://spravochnick.ru/fizika/mehanika_sploshnyh_sred/vychislitelnaya_gidrodinamika/
https://spravochnick.ru/fizika/mehanika_sploshnyh_sred/vychislitelnaya_gidrodinamika/
https://altairhyperworks.com/product/acusolve
https://en.wikipedia.org/wiki/Continuity%20_equation
https://en.wikipedia.org/wiki/Continuity%20_equation
http://www.314159265.ru/images/MA_conspects/Field_theory.pdf
https://unity3d.com/ru/unity/faq/2491
http://mm-technologies.ru/wp-content/uploads/2016/12/%20osobennosti-chislennogo-modelirovaniya-povedeniya-vozdushnyx-potokov-v-obemax-koncertnyx-i-teatralnyx-zalov.pdf
http://mm-technologies.ru/wp-content/uploads/2016/12/%20osobennosti-chislennogo-modelirovaniya-povedeniya-vozdushnyx-potokov-v-obemax-koncertnyx-i-teatralnyx-zalov.pdf
http://mm-technologies.ru/wp-content/uploads/2016/12/%20osobennosti-chislennogo-modelirovaniya-povedeniya-vozdushnyx-potokov-v-obemax-koncertnyx-i-teatralnyx-zalov.pdf
https://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf
https://ru.wikipedia.org/wiki/Freeglut
http://log-in.ru/books/lamb-g-gidrodinamika-lamb-g-nauka-i-obrazovanie/
http://log-in.ru/books/lamb-g-gidrodinamika-lamb-g-nauka-i-obrazovanie/
https://www.twirpx.com/file/891058/
https://toehelp.ru/theory/informat/lecture13.html
http://www.claymath.org/millennium-problems/navier–stokes-equation
http://www.claymath.org/millennium-problems/navier–stokes-equation
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.pdf
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/GDC03.pdf
http://docs.cntd.ru/document/901704046
https://www.twirpx.com/file/67973/
http://www.scert.ru/conferences/cites/2007/presentation/Presentation/School/tolstykh.pdf
http://www.scert.ru/conferences/cites/2007/presentation/Presentation/School/tolstykh.pdf
https://habr.com/ru/post/161463/
https://math.volchenko.com/Lectures/PotField.pdf

