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Abstract. The present study deals with the boundary value problems under toroidal
symmetry conditions. The residual stresses after cooling (unloading) in an elasto-plastic material
are calculated. Throughout the paper the conventional Prandtl-Reuss model is generalised and
used. The solution to the problem of hollow torus cooling under a temperature gradient is
obtained and discussed. Analytical solutions, as an approximation of complete boundary value
problem, describing residual deformations and stresses under conditions of toroidal symmetry
are constructed and discussed.

Preliminary remarks
Requirement for the use of lightweight parts and structures has significantly increased in
many branches of modern mechanical engineering and aircraft construction. This problem is
partially solved by the use of functionally gradient materials (for example, titanium alloys) [1–5].
Functionally graded material is a class of modern materials with different properties depending
on the characteristic microstructural size. In nature, functionally graded materials are bones,
teeth, etc. One of the unique characteristics of functionally graded materials is their ability to
adapt to specific operational loads.

Another topical problem is the quick and easy replacement of failed parts. The processes
of additive manufacturing have undoubted advantages in the case of their replacement. These
production methods include physical or chemical liquid gas deposition, plasma spraying, self-
propagating high temperature synthesis, powder metallurgy, centrifugal casting, and laser metal
deposition. The laser metal deposition process is a class of additive manufacturing processes
that allows a functional part to be produced directly from a 3D computer model and possibly
from the various materials.

Products produced by such methods are more economically profitable, and the production is
less toxic in comparison with other technological processes. Nevertheless, products and materials
obtained by the additive method often exhibit the microstructural features and are functionally
graded materials.

Mathematical models of deformation of the items manufactured by the methods described
above must undoubtedly take into account temperature effects. The thermoelasticity model
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obtained by generalising the classical Prandtl-Reuss model fully meets the requirements of
modern engineering for researchers. Earlier, the authors of this research have solved a number
of boundary value problems for temperature stresses calculation in the bodies with axial and
central symmetry [6–18]. In this work, we will consider the problem of the residual stresses
calculation under conditions of toroidal symmetry. The basis for the plastic flow calculation
preceding the stage of material unloading is the results presented in publications [19–25].

1. Differential equations of thermoelastoplastic model
Transformation from Cartesian (X, Y , Z) to the toroidal (r, θ, ϕ) coordinates is given by
relations:

X = Ω cosϕ, Y = Ω sinϕ, Z = R0 cos θ, Ω = R0 + r sin θ, (1)

where R0 is the major radius of the torus, r ∈ [r1, r2], r1 and r2 are the inner and outer radius
of the toroidal surface. The center of the torus corresponds to the origin of the Cartesian
coordinates and the center of the toroidal system is located on the generatrix of the torus.

Strain tensor components are the sum of the thermoelastic eij and the plastic pij parts.

dij = eij + pij (2)

The strain tensor components depend on the displacement vector ui by following equations

dθθ =
uθ,θ
r

+
ur
r
, dϕϕ =

ur sin θ + uθ cos θ

Ω
+
uϕ,ϕ

Ω
, drθ =

1

2

(
ur,θ
r

+ uθ,r −
uθ
r

)
,

drr = ur,r, drϕ =
1

2

(
ur,ϕ
Ω

+ uϕ,r −
uϕ sin θ

Ω

)
, dθϕ =

1

2

(
uθ,ϕ
Ω

+ uϕ,θ −
uϕ cos θ

Ω

)
.

(3)

There comma denotes the partial derivatives with respect to the corresponding spatial
coordinate.

In the toroidal coordinate net the equilibrium equations take the form

σrr,r +
σrθ,θ
r

+
σrϕ,ϕ

Ω
+
σrr − σθθ

r
+

sin θ

Ω
(σrr − σϕϕ + cot θσrθ) = 0,

σrθ,r +
σθθ,θ
r

+
σθϕ,ϕ

Ω
+

2σrθ
r

+
sin θ

Ω
(σrθ + cot θ(σθθ − σϕϕ)) = 0,

σrϕ,r +
σθϕ,θ
r

+
σϕϕ,ϕ

Ω
+
σrϕ
r

+
2 sin θ

Ω
(σrϕ + cot θ σθϕ) = 0.

(4)

The constitutive equations of the thermoelastic continuum can be assumed in the form of the
Duhamel-Neumann’s law:

σij = λδijtreij − αδij(3λ+ 2µ)(T − T0) + 2µeij , (5)

where δij is Kronecker delta, λ, µ are Lame constants, α is coefficient of the linear thermal
expansion, (T − T0) is the difference between the initial T0 and the current temperature T .

Note that in the further consideration, we will neglect the influence of deformation processes
on the change in the temperature field. In the toroidal coordinates the heat equation reads by

T,rr +
(R0 + 2r sin θ)T,r
r(R0 + r sin θ)

+
T,θθ
r2

+
cos θ T,θ

r(R0 + r sin θ)
+

T,ϕϕ
(R0 + r sin θ)2

=
1

κ

∂T

∂t
. (6)

Under the given boundary conditions and known distributions of irreversible deformations
pij , the system of equations (3)–(6) specifies the evolution of the stress-strain state with thermal
impact of the toroidal solid in the toroidal coordinates.
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2. Statement of boundary value problem
Consider hollow torus with the major radius R0 and r1 < r < r2. Thermal influence is given by
axisymmetric (according to Z-axis) temperature distribution. In this case, the stress-strain state
does not depend on angular coordinate ϕ. Thus, the following components of the displacement
vector, the strain tensor and the stress tensor will be equal to zero:

uϕ = 0, drϕ = dθϕ = 0, σrϕ = σθϕ = 0. (7)

On the outer surface r = r2, we define the state of free thermal expansion according to the
boundary conditions

σrr(r1, θ) = 0, σrθ(r1, θ) = 0, σrr(r2, θ) = 0, σrθ(r2, θ) = 0. (8)

Consider the solution of the stationary heat equation (6) with the boundary conditions:

T (r1, θ) = Tk, T (r2, θ) = T0. (9)

Numerical analysis of solutions to the heat equation showed that the calculated temperature
distribution depends significantly on the geometry of the torus and for small values of the
parameter ε = r2/R0 it can be described by a function that depends only on the radial
coordinate. As ε = r2/R0 tends to zero, the toroidal symmetry turns into cylindrical, which
allows one-dimensional analytical solutions to be taken with a sufficient degree of accuracy in
the approximation of the hypothesis of generalized plane deformation. With this approach, it is
important to determine the admissible finite values of the parameter ε, for which the cylindrical
solutions will satisfactorily describe two-dimensional numerical solutions in toroidal coordinates.

The stationary heat conduction equation at ε = 0 ( under conditions of axial symmetry)
takes the form:

T,r + rT,rr = 0. (10)

Numerical experiments have shown that the maximum deviation of the analytical solution of
the equation (10) from the numerical solution of the equation (6) is less than 2% for ε = 0.1 and
r1/r2 = 0.4. Therefore, with a sufficiently high degree of accuracy, the temperature distribution
at ε < 0.1 can be considered for the one-dimensional case.

For ε = 0 we have the equilibrium equations and the relations for the strains:

σrr,r +
σrθ,θ
r

+
σrr − σθθ

r
= 0, σrθ,r +

σθθ,θ
r

+
2σrθ
r

= 0.

drr = F,r dϕϕ = C, dθθ =
F

r
, drθ = 0,

(11)

where F (r) is the unknown function, C is the unknown constant. In this case, the components
of the displacement vector can be represented as:

ur(r, θ) = F (r) +R0C sin θ, uθ(r, θ) = R0C cos θ. (12)

The form of the function F (r) depends on the stress-strain state and it is determined by taking
into account the presence or absence of plastic flow in a given area of the material.

3. Stress-strain state under accumulated irreversible strains
As early shown in papers [19–21], with free thermal expansion, the temperature gradient specified
by the conditions (9) leads to the appearance of several regions of deformation in the material:
two regions of plastic flow corresponding to the edge and face of the Tresca prism, and a region
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Figure 1. Thermal stresses in the toroidal coordinates, r1r
−1
2 = 0.4, ε = 0, br−1

2 = 0.517,
ar−1

2 = 0.547.

of thermoelastic deformation. Solutions in each area of a specific area are given in [19–21] and
differ from each other by the form of the function F (r). Distributions of the thermal stresses in
the case of plastic flow are shown on the figure 1.

Consider the cooling process of the torus from the stress-strain state showing on figure 1
to the state when the temperature field returns to the initial distribution (T = T0). In this
case, after the plastic flow, the unloading process will begin, characterised by thermoelastic
deformation taking into account the accumulated irreversible deformations. Expressing one of
the components of plastic deformations in terms of two others (pϕϕ = −prr − pθθ), we obtain
the final equations for stresses forming in the material during unloading:

σrr =
2µ

η2

∫ r

r1

prr(ρ)− pθθ(ρ)

ρ
dρ− 2µ2

(λ+ 2µ)r2

∫ r

r1

ρ[prr(ρ) + pθθ(ρ)]dρ+
Q

r2
+ P,

σθθ = [rσrr(r)],r, σϕϕ = µγ[prr(r) + pθθ(r)] +
λσrr(r) + λσθθ(r)

2(λ+ µ)
.

(13)

Here, P , Q are integration constants.
According to the plasticity conditions, plastic deformations [19–21] can be represented as:

prr =


p∗rr, r1 ≤ r ≤ b,
p∗∗rr , b ≤ r ≤ a,
0, r1 ≤ a ≤ r2,

pθθ =


p∗θθ, r1 ≤ r ≤ b,
0, b ≤ r ≤ a,
0, r1 ≤ a ≤ r2.

(14)

The plastic deformations are described by the formulas in the domain r1 ≤ r ≤ b:

p∗rr = −C
2

+
D

r2
− ω

∫ r

r1

k(ρ)

ρ
dρ+

ω

r2

∫ r

r1

k(ρ)ρdρ− 3

r2

∫ r

r1

∆(ρ)ρdρ− 2
k

µγ
+ 2∆,

p∗θθ = −C
2
− D

r2
− ω

∫ r

r1

k(ρ)

ρ
dρ− ω

r2

∫ r

r1

k(ρ)ρdρ+
3

r2

∫ r

r1

∆(ρ)ρdρ+
k

µγ
−∆,

p∗ϕϕ = C + 2ω

∫ r

r1

k(ρ)

ρ
dρ+

k

µγ
−∆, ω =

1

3λ+ 2µ
,

(15)
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Figure 2. Residual stresses, r1r
−1
2 = 0.4, ε = 0, br−1

2 = 0.517, ar−1
2 = 0.547.

and in the domain b ≤ r ≤ a:

F ∗∗(r) =
ψ

2η

[
η + 1

rη

∫ r

r1

∆(ρ)ρηdρ+ (η − 1)rη
∫ r

r1

∆(ρ)

ρη
dρ

]
+ rC

− 1

2(λ+ µ)

[
1

rη

∫ r

r1

k(ρ)ρηdρ+ rη
∫ r

r1

k(ρ)

ρη
dρ

]
+Mrη +

N

rη
,

p∗∗rr =
1

2

(
F ∗∗
,r − C −

k

µ

)
, p∗∗ϕϕ =

1

2

(
C +

k

µ
− F ∗∗

,r

)
, ψ =

3λ+ 2µ

λ+ µ
,

(16)

where C, D are the constants, ∆ is the difference between the maximum temperature in the
each point of the material and the initial temperature.

Equations (12)–(16) determine the stress-strain state under conditions of elastic unloading of
the material. Distributions of the residual stresses after torus cooling are shown on the figure 2.
Note that, in this case, the zones of plastic deformation are not sufficient for the occurrence of
repeated plastic flow.

4. Conclusion
The paper is devoted to the boundary value problems under toroidal symmetry conditions. The
residual stresses after cooling (unloading) in an elasto-plastic material have been calculated.
Throughout the paper the conventional Prandtl-Reuss model has been generalised and used. The
solution to the problem of hollow torus cooling under a temperature gradient has been obtained
and discussed. Analytical solutions, as an approximation of complete boundary value problem,
describing residual deformations and stresses under conditions of toroidal symmetry have
constructed and discussed. The present analytical solutions can be applied to the calculation
thick-walled long constructions manifesting symmetry close to tororidal one.
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