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Abstract:The nonlinear evolution of initially elliptical vortex is studied in the framework of two-laye
: z3i-zzostrophic contour dynamics (CD) model of a round ocean. The vortex is located in the upper layer an

—= 2wer laver is considered as passive. There were found

several regimes of evolution depending on th

-7z ellipse aspect ratio. The critical values of aspect ratio that divide different modes of evolution have bee:
‘o2 rumerically in a wide range of values of the model parameters.
I2dex Terms:Contour dynamics, Two-layer quasi-geostrophic model, Vortex patch, Kirchhoff vortex.

INTRODUCTION

=M the theory of plane flows of an ideal
resmoressible fluid is known M that uniform
= =2z vonex (Kirchhoff vortex) in an unbounded
w2 tzzies without changing its shape with a
ab
)

2
oomsm=mt znzular velocity (a+b) , where a, b
.= of the ellipse, o — vorticity inside it. Further
:2.2 23 7 showed that the Kirchhoff vortex is stable

a

—<3
“- -Tnitesimal perturbations of its shape if b
“w_~z~cal studies of Kirchhoff vortex instability

zm2 w23 that there are two different kinds of evolution.

- 1= —xczrate values of aspect ratio thin filaments of
c2=z= 721 are formed at the ends of major axis of
- 172w If aspect ratio becomes greater than some
—=ox wzu2, the initial ellipse is divided into two
=2z zz—3 connected by a filament. For a highly
siimzzmes somices the number of secondary parts
: =z:2r than two.

© :m2..3 be noted that in most of CD-based
c:-z2rning Kirchhoff vortex authors have
-zl Tows in horizontally unbounded domain.

eIy

~rins v m2 real conditions in the ocean (sea) or
arerEl~ exwoeriments  include rigid boundaries
w7 wnoL 2 mTuence the observed phenomena. The
“rm zmz— o7 oo study vortex flows in a closed area by
TT wm —zzz . 7 where barotropic ocean model for
: zrzuas 22— 270 was developed. Thereafter ) in the
Tamewore o7 this model the study of nonlinear

mers o o0 sorchhoff vortex was carried out and
anme e 272 unknown in the case of unbounded

Tung sz Tnond

==~ T veanography applications point of
wemw Tre oSt mleresting CD-based ocean model is
me mEoe -2 ome taking into account effects of

vertical density stratification. Two-laye
quasi-geostrophic CD-based model for horizontally
unbounded ocean was developed first in ! anc

thereafter studies of two-layer vortex dynamic:
including the problems of two-layer axisymmetric
vortex instability, vortex interactions, upper anc
two-layer vortex merger and V-states were carriec
out by many researchers (more information one car
find in review [},

The main objectives of this paper are the study
of stability properties of Kirchhoff vortex localized in
the upper layer of two-layer round ocean and
classification of different modes of instability in the
most interesting nonlinear stage of the process.

GOVERNING EQUATIONS OF THE

MODEL
The system under consideration is composed of

two layers of density p and p + Ap (Ap « p) and
thickness H1 and H2 (H1 « L*, H2 « L*, where L*
being the linear horizontal scale of the system) for the
upper and lower layer respectively.

In  quasi-geostrophic  approximation and
non-dimensional form the potential vorticity (PV) IT
conservation laws in layers can be written in form U

lel
TS =12, 1
7 ey
where indexes | and 2 refer to upper and lower
layer respectively, the total derivative is

d, 3 0 5]
= —tu—+v,—,
dt ot ox oy

ui , vi — geostrophic velocities.

Let’s make the assumption that TT is constant
and nonzero at the initial time in the region S with the
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boundary C located in the upper layer. In accordance
with (1) this property will be true at all subsequent
times. Under this assumption expressions for pressure
at point (X, y) can be written in form

p ey, =1{[G, (x, y;¢,mdédn -(1-d)p,  (2)
5

p?_(xyy’t)zdpa (3)
p(x,y.0) = -1[[G(x, y: &, m)dédn, )
S
where @ =0n —C. (GH and GL are the Green’s

functions for the Helmholtz and Laplace equations
respectively), d — relative thickness of the upper layer.
Expressions (2-4) allow us to find pressure at any
point of the flow and therefore we can calculate the
components of  geostrophic  velocity  using
well-known relations

BN )

' o’

As known the Green’s function for the Laplace’s
equation inside a circle of radius a has the form

R*rOJ’ )
a

G, = —l—(logR— log
C 27

where

“le-vrem-»]",
R =[x v 7]
ro = (&2 +nH)", (5*,77*)——22(5 n).
Let’s introduce the function ¥
O(x, y;&,m) = :I)GL (x5, y;x+(§=x)z,y +(n = y)2)zdz .
(M
Using the Stokes’s theorem and the identity

G, =l -n0), +ln-»e],,

we can rewrite the corresponding terms in (2-4) in
form

(]G, dédn = §((& - x)dn — (n - y)d&]. ®)
S C

For the results of calculation (8) and other details

of barotropic CD model for a circular domain see .

As shown in [8] the Green’s function for the
Helmholtz equation inside a circle of radius a can be
written using polar coordinates in the form

< K (k
| S
GH (r5 @) =—|" e

1 Lk, r)
2 0

1, Ckryl, (hrg ) cos n(6 — ) —

(9

In are the modified Bessel

_ (xz + y2)|/2

where Kn and

functions of order n. ” , k — parameter
characterizing the baroclinic effects. In the case of
last term of (8) one can use the symmetry of
argument of Bessel function with respect to (x, y) and
(& m) to transform integrals over S in (5) to integrals
over C. To do this for the case of first term of (8)
let’s introduce the function

iy

0,(r) =21,

0

(ke)dz

and then using the Stokes’s theorem we can write

j[ 5 Fatt

S n—OTn n(k )
§ K, (ka)
cTn n(k)

1, (kr)1, (kry)cos n(B — p)rydryd6 =

1, (kr)Q, (ry)cosn(8 — p)dl
(10)

Relations (2-10) allow us to calculate velocity
components at any point of domain and hence
determine time evolution of vortex patches by
solving the system of ordinary differential equations
of motion of fluid particles lying on C

ji—‘C—zu, ﬁfV~:v. (1
dt dt
NUMERICAL EXPERIMENTS
Consider the special case when S is an ellipse
with semiaxis a and b. We will classify the modes of
evolution depending on such parameters as the ratio

a
£=—

of semiaxis
the relative thickness of the upper layer d, and the
baroclinic parameter k.

Experiments have shown that there are two

b | the square of the ellipse S = 7ab

i
|
i
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e, dTerzm: modes of evolution. If ¢ is less than
or the e mateiy 2.0, vortex performs a quasi-periodic .
tan be 5o zmoos about some equilibrium shape and after a (@
“za rzvolutions loses its symmetry and is divided \)

-2 ~a0 unequal parts (sometimes thin filament
“:—:z ~stead of one of these parts). The time
—9)- —=z_r=2 for the loss of symmetry of the system
wzrenis on the value of semiaxis ratio bat this
s> —270n was observed in all cases. Fig. 1 shows
'z of this mode of evolution for the set
z—ameters: d=0.5, k=5.0, €=4.0, S=0.503.

FREEagS,

oy

Bessel
t=40 t=50 t=75
ameter
ase of
try of
y) and SAR
tegrals
of (8)
T
%
I write =200
t=85 t=95 t=100
046 = Fig. 2 The mode of evolution of elliptical vortex wi
periodic merge/split.
The critical value of ¢ depends on all oth
(10) ‘ parameters of the problem. Fig. 3 illustrates t
s influence of d and S on €. Lines 1 and 2 were drav
relocity for k=1.0, d=0.5 and k=1.0, d=0.2 respectivel
hence Values of S and ¢ above each curve correspond to
bes by B merge/split mode of evolution. It can |
nations concluded that the decrease in the thickness of t
S~ upper layer leads to the expansion of the paramete
=os t=240 =260  field in which the mode of merge/split is observed.
(an =1 Tmezmode of evolution of elliptical vortex with
2 1oss of symmetry of the system.
ellipse . i aad \‘a?ues of S, k, d there is a criti.cal value
odes of 0L ozone which anothfar r}u.)de of evolution takes
he ratio nacs - s case vortex is divided to two equal parts
zrreczl Oy thin filament during first revolution.
S = 2ab g "-‘ex:. parts show a tendency to periodic
) merzz 27l The example of this behavior is shown in
and the ST
re two
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Ratio of semiaxis

Square of the vortex
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