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Abstract—This paper gives a quick overview of current 

positioning vessel seaway systems with particular focus on 

autosteering gear systems involving elements of artificial 

intelligence systems. The authors recommend an autosteering 

system containing a fuzzy logic regulator to obtain control 

activity; a neural network classifier enabling to select optimal 

neural network models of the vessel paths; and an optimizer with 

a genetic algorithm that promotes controller parameter settings 

on a fuzzy logic. The paper submits findings from obtaining 

optimal neural network architectures, which are prospective for 

composing neural network models of the sea vessel paths. The 

conducted simulation modeling for a trawler, one of the most 

difficult sea craft to control, allows the researchers to make 

positive conclusions on the introduced system operation. 
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I.  INTRODUCTION 

The level of ship automation has increased greatly over the 
last few decades, and tends to grow further. The development 
of ship automation facilities mostly deals with the requirements 
of cost efficiency and safety ensuring. For example, the studies 
in the field of automation of ship heading control systems are 
related to these two very factors, since the use of autopilots 
contributes to ensure an economy mode of a vessel heading, 
thus decreasing the rate of fuel consumption and reducing the 
wearing process of final control elements of the control system 
[1]. Safety matters are also in a major focus, in particular, 
paper [2] examines the strategies of onshore personnel’s 
actions in case of autopilot failure. 

Despite the substantial progress in developing ship heading 
control systems, a proportional-integral-differentiating (PID) 

controller is still used as the main approach to designing 
autopilots. PID is characterized by extensive overshooting 
values. A number of authors are working out the methods that 
enable to reduce disadvantages of PID controller. For example, 
the findings of simulating a model of an autopilot with PID 
controller and a compensation device are shown in paper [3]. 
They allow reducing overshooting, as well as turn away a 
vessel at a constant angular velocity. Paper [4] observes PID 
regulation used to control a vessel, however, the system 
includes a model for generating the path of the vessel heading 
taking into account the International Rules for Preventing 
Collisions at Sea (COLREG), especially modeled decision 
diagrams according to Rule 8 and 14 of COLREG. The 
researchers of paper [5] designed a simulator, including a 
model of an autopilot, applied successfully for ship's crew 
training. They used MATLAB / Simulink mathematical 
software to develop the simulator. The simulation was 
performed using Nomoto mathematical model for a sea craft 
heading. 

There are a number of autopilots designed for certain types 
of vessels. Such autopilots tend to take into account the 
characteristics of the vessel types. For example, the outcomes 
of mathematical control modeling of a tanker heading based on 
deviations from a given seaway are presented in paper [6]. The 
study also highlights the formulation of nonlinear symbolic 
models counting a maneuvering ability of large tankers in deep 
and enclosed waters. 

The researchers of paper [7] solve the optimization issue of 
adjustment the output feedback coupling features using a 
special multi-operated controller structure. The authors present 
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the application and efficiency of the proposed approach in the 
study through the example of the sea autopilot designing 
construction. Paper [8] focuses on the issue of deviation of 
external disturbances for marine control systems controlled by 
autopilots under the influence of wind and wave disturbances. 
The author searches for mathematical models of adjustable 
members for the law of control with a special structure capable 
of achieving the desired values of corresponding composed 
functions characterizing the accuracy and intensity of the 
steering vessel control. Paper [9] devoted to the same subject 
points out a new applied method for synthesizing control laws 
for autopilots, which is based on feedbacks with a multiple-
purpose structure with the introduction of a generating filter for 
disturbance. It is nominally represented by Gaussian white 
noise having equal intensity at different frequencies. Finally, a 
computational algorithm is given based on the idea of H∞-
infinity stabilization method, which allows ensuring guaranteed 
filtering quality for the autopilot operation when navigating 
under sea waves conditions. This approach has several 
advantages in contrary to the options. One of them is its 
flexibility in coming to terms with real navigation conditions. 

In paper [10], the PID controller is one of the elements of 
an intelligent transportation control system (ITCS). The 
proposed intelligent transportation control system (ITCS) 
applies a wavelet neural network (WNN) controller, while the 
PID controller parameters are drawn from Lyapunov’s stability 
theorem. They are also used to adjust the parameters of the 
wavelet neural network, ensuring stability and fast autopilot 
convergence. In [11], the authors show the findings of solving 
the problem of forecasting a marine vessel heading pattern 
using an artificial neural network. 

In a number of papers, the authors solve the problem of 
steering the vessel heading through the fuzzy set theory. The 
authors of paper [12] considered the model of a large-scale 
copy of the tanker Esso Osaka, for which a controller based on 
the fuzzy logic theory was proposed. The simulation results 
obtained by the authors show that the proposed controller, 
based on the fuzzy logic theory, is more efficient than well-
established controllers.  

In paper [13] an autopilot is proposed for oil tankers using 
the neuro-fuzzy stabilization model of the ship heading. In 
paper [14], they offer a backstepping method diagram with 
non-linearity compensation using fuzzy logic. The simulation 
carried out by the authors proves the efficiency of the proposed 
control diagram. In paper [15], an autopilot model is given 
based on the fuzzy logic theory, which contains Takagi – 
Sugeno fuzzy inference system. In [16], an autopilot model is 
observed using the fuzzy logic theory. Such an autopilot can 
respond to various external disturbances influencing a vessel 
properly. In this paper, a numerical simulation of the proposed 
autopilot is performed on the Cybership II model vessel, and 
the findings of a comparative analysis of the proposed 
controller with traditional backstepping and PID controllers are 
shown. The paper also proves the stability of the proposed 
approach using Lyapunov’s stability criteria. There is an 
autopilot for autonomous maritime vessels, combining the 
advantages of variable structure systems with a self- regulating 
scheme based on the fuzzy logic theory presented in paper 
[17]. 

The authors of paper [18] suggest an approach based on the 
extended state observer (ESO) technique for controlling the 
ship yaw. The reliability of the autopilot is ensured by the fact 
that the level of external influences on the vessel is estimated 
using ESO, which also evaluates the parameters of the 
controller. So the simulation was performed to confirm the 
efficiency of the ESO technology. In the studies [19], which 
are to be a further survey of the previous one [18] there is an 
approach featured using the Generalized Extended State 
Observer (GESO). The paper presents a structural diagram 
consisting of a controller, supplemented by the term GESO 
disturbance compensation. The efficiency of the proposed 
controller system is illustrated by modeling considering 
different real situations. 

There are also developments aimed at developing control 
systems for next-generation unmanned surface vehicles (USV) 
that can steer efficiently, based on limited sensory information 
on the underwater environment surrounding a vessel. In paper 
[20], the authors put up a system that revitalizes the behavior 
pattern of the sea surface according to the information from 
LiDAR (light Identification, detection and ranging), which 
provides a foundation for the development of ship control 
systems operating in rise and fall of the waves seas and limited 
information on the surrounding sea surface. Also, in paper [21] 
the authors submit a model predictive controller, and the 
forecast is based on one of the following optimization 
algorithms: the gradient descent method, the least squares 
method or the weighted least squares method.   

II. AN AUTOMATIC CONTROL INTELLIGENT SYSTEM OF A SEA 

CRAFTHEADING 

The problem of steering a sea vessel is difficult to 
formalize, not having an appropriate mathematical formulation. 
Therefore, the application of conventional approaches is 
considered to be ineffective. The attractiveness of artificial 
intelligent systems for steering a ship lays in their positive 
properties such as the ability to operate with fragmentary data, 
the information with no exact analytical description, with big 
data, i.e. data that are large in size and having difficulty in 
finding a certain correlation among the separate elements. 

Increasing demands for navigation systems, the deficiency 
of methods for modeling the process of steering a ship heading 
using artificial intelligent systems reasoned the relevance of 
this survey. The aim of the study is to develop and simulate 
testing a universal ship control system of a vessel heading 
involving theoretical and applied foundations of artificial 
intelligent systems. 

The intelligent system of automatic vessel heading control 
is presented in the given study. The functional flow diagram of 
it is shown in Fig.1. The intelligent systems, which are the best 
at performing specific functional purposes, are used for its 
development. When the vessel is heading as a controlled object 
(CO) of an intelligent automated control system (IACS) in the 
operation mode, the vessel generates a data vector with the 
values for the vessel yaw angle, the rate of this angle change, 
the values of rudder shifts and the rate of rudder blade change. 

Subsequently, a spectral analysis of this vector occurs, 
highlighting eight over tones for each signal plus a linear value 
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of the vessel speed, which are characteristics of the vessel 
heading under current weather conditions. These values are 
displayed onto the input of the neural network classifier (NNC) 
that determines which of the neural networks fits these 
characteristics best of all according to statistic data. The data 
from the NNC is received in the unit containing the neural 
network models of the patterns of marine vessels seaways, 
where the optimal neural network model is determined based 
on the input data. The determined neural network model of the 
sea vessel heading path constitutes the optimal parameters of 
the neural network classifier, i.e. adjusts the fuzzy logic 
controller according to the neural network model in the 
optimizer. The best parameters are selected for the current 
wind and wave conditions, navigation mode and sea craft 
features. 
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Fig. 1. Functional flow diagram of an intelligent vessel automatic heading 

control system. 

FLC – a fuzzy logic controller, CO – a controlled object, 
O–an optimizer, NNM CO – a neural network model of the 
controlled object (neural network model of the marine vessel 
heading pattern), NNC – a neural network classifier, KЗ – a 
specified heading, е1 – a control error, е2 – an identification 
error, α- the control action (angle of the rudder blade), K – the 
value of the actual vessel heading, уm – the value of the actual 
model of the vessel heading, F –external effects, W – the vector 
of neural network parameters, Vr – the vector of adjustable 
control parameters Vα – the vector of control action data, Vy –
the data vector of the actual vessel heading, VA – the vector of 
criteria signs of vessel heading. 

III. AN EXAMINATION OF THE DEVELOPED INTELLIGENT SYSTEM 

OPERATIONAL CAPACITY OF AUTOMATED VESSEL HEADING 

CONTROL 

The performance check of the vessel heading designed by 
IACS was run in two stages. The first stage was to conduct 
computer modeling to fill the knowledge base of the neural 
network classifier with models of ships under various wind and 
wave conditions. The second stage consisted of carrying out 
simulation modeling for a model of a trawler type vessel at 
different speeds and changing weather conditions in order to 
test the adaptation process of the fuzzy logic controller. For 
simulation, a certified IC-2005 simulator (Manufacturer: 
Engineering Center of Information and Control Systems, St. 
Petersburg, Russia) was used to simulate signals of a 
GLONASS / GPS receiver, a chip log, mariner’s compass and 
rudder position sensor for testing and setting modern 
autopilots. The mathematical model of heading for 6 types of 
vessels has 4-degree-of-freedom and provides modeling of the 
aheading only (more than 1 knot) in deep and shallow water 

(regular shallowness) by winds, stream current and irregular 
sea waves. 

A. Computer modeling for filling the knowledge base of a 

neural network classifier 

First, a simulation on a certified signal simulator for an 
autopilot IC-2005 was carried out to obtain neural network 
models of the ship heading patterns. More than 120 patterns of 
six different models of ships were received. They are a 
passenger coastal craft, a trawler, a transport refrigerator, an 
automobile and passenger vessel, a tanker, and a supertanker. 

Marine Ship Characteristics used in simulation are shown 
in Table 1. 

TABLE I.  SHIP CHARACTERISTICS 

Parameter Ship Type 

Trawler Ship Automobile 

and Passenger 

vessel 

Passenger 

Coastal craft 

Length, m 85 158 35.5 

Width, m  15.9 25 7.2 

Draft, m 5.6 6.5 2.15 

The ratio of the 
overall completeness  

0.64 0.58 0.63 

Rudder area, m2 11.7 23.9 1.5 

Engine Type  Diesel Diesel  Diesel 

Speedmax, knots 8; 12; 15 15 8 

Parameter Ship Type 

Tanker Transport 

Refrigerator 

Supertanker 

Length, m 179.9 107.8 325 

Width, m  31 18.2 53 

Draft, m 10 7.5 22 

The ratio of the 

overall completeness  

0.813 0.638 0.81 

Rudder area, m2 25.7 42.8 124.2 

Engine Type  Diesel Diesel  Turbine 

Speedmax, knots 15 15 15.6 

Computer simulations were carried out for the following 
different navigation conditions: 

 wind speed from 0 to 2 m/s, wave height of 0.25 m, 

 wind speed from 2 to 5 m/s, wave height 0.85 m, 

 wind speed from 5 to 8 m/s, wave height 1.25 m, 

 wind speed from 8 to 10 m/s, wave height 1.25 m. 

79 neural networks, which are different in architecture and 
learning algorithm, were trained for several of the selected 
possible patterns of a vessel heading under various weather 
conditions. In conclusion, 2518 neural network models of sea 
vessel heading patterns were obtained. After reviewing a root-
mean-square error (RMS error), 8 NN were selected out of 79. 
They allow approximating the vessel heading patterns with the 
lowest RMS values. The results that the authors have arrived at 
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are brought all together in the diagram and introduced in Figure 
2. An observation of computer simulation results allows the 
authors to sum up that it is more beneficial to use the feed 
forward propagation NN with the Levenberg–Marquardt 
learning algorithm as a neural network model of a vessel 
heading pattern. 

 

Fig. 2. Standard error dependence on the NN type. 

1-3 – feed forward propagation neural networks with the 
Levenberg–Marquardt learning algorithm (100, 500 and 1000 
learning cycles, respectively), 

4 – feed forward propagation NN with the Möller learning 
algorithm (combination of the nonlinear conjugate gradient 
method and the Quasi-Newton method) (500 learning cycles), 

5-7 – a recurrent Elman neural network with the 
Levenberg–Marquardt learning algorithm (500 and 1000 
learning cycles, respectively), 

8 – a recurrent Elman neural network with the Möller 
learning algorithm (1000 learning cycles). 

The cost function of the identification algorithm of the 
neural network model of the vessel pattern was to minimize the 
standard deviation of the instantaneous e output value of the 
marine vessel model from the corresponding actual vessel 
heading. 

  
max

0max
1

1
min

T

m dtYY
T

I  

To avoid the astatism effect, it is proposed to use the 

squared difference of the error derived from the heading of the 

neural network model of the vessel pattern and its actual 

heading as a cost function. 
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T
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In this case, the search algorithm tends to minimize the 
discrepancy between the derivatives of the output signals at 
current times. 

Figure 3 shows the behavior patterns of the trawler ship 
model heading and entering a new one with an adapted and 

unadapted fuzzy logic controller by wind of 8 to 10 m/s and a 
wave height of 1.25 meters. 

 
Fig. 3. Trawler ship type heading at the rate of 10 degrees before and after 

adaptation. 

The review of the findings showed that the fuzzy logic 
controller requires additional configuration when the weather is 
bad, which confirms that introduction of a neural network 
classifier with the intelligent database of neural networks with 
the best identification of the sea vessel heading patterns for 
various weather conditions is quite reasonable. The adaptation 
of the fuzzy logic controller resulted in new values of the 
setting parameters 

B. Simulation for a trawler ship type model 

A trawler ship type was taken as a model for further IACS 
investigation. The parameters of this model are presented in 
Table 1.  

After conducting a series of simulation experiments, 12 
neural network models of the trawler heading patterns for 
various weather conditions and different speeds were kept in 
the intelligent database of the neural network classifier. The 
model behavior of the trawler ship type simulator before and 
after adaptation is shown in Figure 4. 

 

Fig. 4. Sailing of the trawler ship type heading of 10 degrees at wind speeds 

of 8-10 m/s, a wave height of 1.25 m. 

 

Fig. 5. Adaptation of the trawler heading of 10 degrees at wind speeds of 8-

10 m/s, wave height of 1.25 m. 
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Figure 5 shows the adaptation for a trawler during the 
extreme weather events (wind speed from 0 to 2 m/s, wave 
height of 0.25 m; wind speed from 8 to 10 m/s, wave height of 
1.25 m). 

The root-mean-square integral performance criterion for the 
deviation of the trawler from the heading decreased from 2.43 
(for the first three minutes) to 0.16 (for the last 3 minutes). The 
criterion was optimized while ensuring the autopilot actuator 
could operate no longer than 2/3 of the studied period (Fig. 6, 
heading 1). When adapting the RNN, other objective functions 
are available to minimize the load upon a steering gear, if 
conditions for maintaining the appropriate vessel steering are 
met. If the requirements of the operating time are to be relaxed 
to ½ (Fig. 6, course 2), i.e. enter the cost function in the 
optimization condition of fuzzy logic controller parameters in 
the following form: 

 


max

0

/

max

1
min

T

Kk
dt

T
I   

where k is the fuzzy logic controller settings, ' is derived 

from the angle of the masonry of the rudder blade (for a 
steering machine with a solenoidal control system ' = ± 3 

degrees / s = const). Thus the load on the steering machine is 
relaxed, the operating time of the machine reduces but the 
quality of steering the ship is getting a bit worse. The integral 
criterion is 0.31 in this case. 

 

Fig. 6. Changing the quality of the vessel heading at 10 degrees and the 

operation mode of the steering vehicle when changing the objective function 
of the fuzzy logic regulator optimization. 

Keep in mind that the authors used genetic algorithms to 
optimize the parameters of the predicate rules of the fuzzy 
logic controller in this study, which allows the authors to avoid 

stopping the algorithm at a local extreme value (extremum) and 
not depending on the problem dimension. 

IV. CONCLUSION 

The review of the findings of a simulation showed the high-
quality vessel heading using a fuzzy logic controller and at a 
given load on the steering gear. According to the research, it 
should be also admitted that the adapted fuzzy logic controller 
steers the vessel heading for the given yaw limits (1 degree) for 
all studied navigation conditions. Moreover, the tested vessel is 
extremely difficult to navigate because of its small size. The 
high-quality operation of the fuzzy logic regulator on such a 
vessel confirms that it is working on ships that are much larger 
and therefore less sensitive to external wind and wave effects. 
The carried out computer and simulation modeling proves the 
efficiency of the given intelligent vessel automatic control 
heading system. 
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