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1. INTRODUCTION

Despite the fact that the investigations of diluted
and disordered magnets have been actively performed
[1–4], most authors mainly concentrate their atten�
tion on studying the influence of “frozen�in” impuri�
ties, which are arranged in lattice sites randomly and
without correlation. However, when, for example, the
composition of a magnet changes in the course of the
chemical reaction [1], this means that magnetic atoms
(or impurity atoms) can be displaced and, if the reac�
tion occurs sufficiently slowly, the system will be in a
state close to the thermodynamic equilibrium. In
addition, when the temperature changes, nonmag�
netic impurities should be redistributed over lattice
sites, which can change magnetic properties.

In this paper, we consider the Bethe approximation
as applied to the diluted Ising magnet with mobile
atoms. The Bethe approximation for a pure magnet
can be obtained as the solution of the Ising problem for
the Bethe lattice (tree) [5] or as the relation between
the magnetization of the central atom and the magne�
tization of the atom of the first coordination sphere
[6]. However, we can also consider the Bethe approxi�
mation as one of self�consistent methods for which the
general construction scheme was presented in our pre�
vious papers [7–9]. These methods are based on the
averaging over local exchange fields. The procedure of
the averaging over local fields can also be used to ana�
lyze the behavior of an alloy of two types of magnetic
atoms [10], as well as to analyze systems in which the
exchange integral is a continuous function of the
interatomic distance [11, 12]. The authors of [13]
already applied one variant of this procedure to ana�
lyze equilibrium states of the alloy of magnetic and
nonmagnetic atoms in the absence of the external
magnetic field. In present paper, we discuss another
approximation for the same model, which can be con�
sidered as the generalization of the Bethe method. In

addition, it is shown that this approximation for the
one�dimensional lattice is an exact solution similarly
to the usual Bethe approximation for the case of a pure
magnet.

2. ISING MODEL WITH MOBILE IMPURITIES 
AND THE APPROXIMATED METHODS 

OF ITS SOLUTION

Let us consider a crystal lattice with coordination
number q, the sites of which can contain magnetic and
nonmagnetic atoms (atoms of types 1 and 2, respec�
tively). For each magnetic atom, there is the Ising spin
si = ±1 so that the exchange interaction energy of two
magnetic atoms with spins si and sj is –Jsisj if the atoms
are arranged in neighboring lattice sites and equals
zero otherwise.

As was done in the study of binary alloys [5], we
assume that, in the system, there are interatomic
forces with the interaction potential of the type of the
Lennard�Jones potential, which rapidly decreases at
large distances [5]. Therefore, we will consider that
their interaction radius is restricted by the first coordi�
nation sphere; we will further call these forces as the
“Coulomb” forces. Let us denote the potential of
these forces as –U

αβ
 (α, β = 1, 2). Now, we assume

that, for each lattice site, there is the variable σi which
is equal to si, when this site is occupied by a magnetic
atom, and is equal to zero, when it is occupied by a
nonmagnetic atom. Then, exchange interaction
energy Eex and the Coulomb energy Ek can be written
in the form of sums over all ordered pairs of neighbor�
ing sites

Eex Jσiσj,

i j,( )

∑–=
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Accurate to the additive constant, the last expression
can be written in the form

where U = U11 + U22 – 2U12, f = q(U12 – U22). We will
call quantity U as the effective potential of the Cou�
lomb interaction; magnetic atoms are attracted at U >
0 and repulsed at U < 0. 

Taking into account that the number of magnetic

atoms in the lattice is Σi , let us write the large statis�
tic sum of the system as follows:

(1)

where μ is the chemical potential and He is the external
magnetic field, while summation is performed over all
possible configurations {σ}.

Let us introduce quantities p = 〈 〉 and M =
〈σi〉/p. It is clear that these quantities are independent
of i since all lattice sites are equivalent (in the thermo�
dynamic limit) and has a simple sense: p is the proba�
bility of the fact that the magnetic atom is arranged in
this site (concentration), while M is its average spin.

To calculate M and p approximately, let us use the
following procedure [7–9]. Let us determine local
exchange field hi and crystalline field ϕi of the ith site

as hi = Σσj and ϕj = Σ  (summation is performed over
all sites neighboring to the ith sites). We will consider
quantities hi and ϕi as the values of random quantities
h and ϕ with joint distribution function W1(h, ϕ). Then

〈σi〉 and 〈 〉 average by ensemble are calculated as

(2)

(3)

where K = J/kT, L = U/kT, he = He/kT, x = exp(–(f +

μ)/kT) (k is the Boltzmann constant).
Let us now consider a cluster consisting of two

neighboring sites and introduce exchange fields h1 and

Ek U11σi
2σj

2 U22 1 σi
2–( ) 1 σj

2–( )+{
i j,( )

∑–=

+ U12 σi
2 1 σj

2–( ) σj
2 1 σi

2–( )+[ ] }.

Ek Uσi
2σj

2

i j,( )

∑– fσi
2
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∑–=

σi
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2+( )
i j,( )

∑⎝
⎜
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⎨
⎧

exp
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⎠
⎟
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/kT
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,

σi
2

σj
2

σi
2

pM
Kh he+( )sinh

Kh he+( )cosh xe Lϕ–+
���������������������������������������������

W1 h ϕ,( )

,=

p
Kh he+( )cosh

Kh he+( )cosh xe Lϕ–+
���������������������������������������������

W1 h ϕ,( )

,=

1
2
��

h2 and crystalline fields ϕ1 and ϕ2 for each cluster site.
Let us find average values of quantities (σ1 + σ2)/2 and

(  + )/2 over the ensemble with a Hamiltonian

considering h1, h2, ϕ1 and ϕ2 as constants. Let us then
introduce the joint distribution function W2(h1, h2, ϕ1,
ϕ2) and average the result by this function

(4)

(5)

Now, we can construct approximate methods of
finding M and p in two ways. The first way is in that
unknown distribution function W1(h, ϕ) in (2) and (3)
(or function W2(h1, h2, ϕ1, ϕ2) in (4) and (5) is substi�
tuted by one or another approximate expression
through desired values of M and p, due to which, (2)
and (3) (or (4) and (5)) are transformed into equations
relative to M and p. For example, if we take W1(h, ϕ) =
δ(h – qpM)δ(ϕ – qp), i.e., substitute fields by their
average values, we will derive the mean field method.
On the other hand, if we construct the approximate
expression for W1(h, ϕ) using a binomial distribution,
we will derive the method described in [13]. Of course,
we can also construct similar approximations for func�
tion W2(h1, h2, ϕ1, ϕ2).

The second method consists in the fact that both
distribution functions W1(h, ϕ) and W2 (h1, h2, ϕ1, ϕ2)
are expressed through the same parameters m and ρ,
equations for determining of which are obtained by
leveling right sides (2) and (4) as well as (3) and (5).
Such method of obtaining approximate equations can
be found “renormalization�grouping” bearing in
mind that the transition from a cluster with one site to
a cluster with two sites can be considered as renormal�
ization�grouping fixed�scale transformation [14]. As
applied to the Ising magnet without impurities, one
variant of this method is the known Bethe approxima�
tion [5]. Let us now construct the approximation sim�
ilar to the Bethe approximation but for the Ising model
with mobile nonmagnetic impurities.

σ1
2 σ2

2

E2 σ1 σ2,( ) Jσ1σ2– Jh1σ1– Jh2σ2–=

– Uσ1
2σ2

2 Uϕ1σ1
2– Uϕ2σ2

2–

– μ σ1
2 σ2

2+( ) He σ1 σ2+( ),–

pM

=  

1
2
��Σσ1 σ2, σ1 σ2+( ) E2 σ1 σ2,( )/kT–( )exp

Σσ1 σ2, E2 σ1 σ2,( )/kT–( )exp
���������������������������������������������������������������������������

W2 h1 h2 ϕ1 ϕ2, , ,( )

,

p

=  

1
2
��Σσ1 σ2, σ1

2 σ2
2+( ) E2 σ1 σ2,( )/kT–( )exp

Σσ1 σ2, E2 σ1 σ2,( )/kT–( )exp
���������������������������������������������������������������������������

W2 h1 h2 ϕ1 ϕ2, , ,( )
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3. BETHE APPROXIMATION

Taking into account the foregoing, we use the fol�
lowing approximations for field distribution functions:

where m and ρ are certain unknown parameters. Then
we will derive from (2) and (3) 

(6)

(7)

and from (4) and (5)

(8)

(9)

where 

Set of equations (6)–(9) at he > 0 (in this case, mag�
netization M is always positive) can be presented as
follows. Let us introduce the notation

Then we will derive from (6)–(9)

(10)

(11)

(12)

where 

(13)

In fact, these equations are parametric depen�
dences M(p, K, he) and μ(p, K, he) since, as we can eas�
ily convince, such range of values of parameter w
always occurs at he > 0, for which p calculated by for�
mula (11) runs the entire range from 0 to 1. Indeed, it
follows from (11) and (13) at w  he + 0 that y 
+∞, while p  0. On the other hand, when consider�
ing the asymptotic behavior of y(w) (13) at w  +∞,
we can conclude that such value of w occurs, at which
y = 0 and, according to (11), p = 1.

Let us now consider the case h2 = 0. It turns out
that the solution of set of equations (6)–(9) with M ≠
0 occurs only at K > Kc(p), where Kc(p) is determined
as follows. Mutually equating quotients from dividing
right parts of (6), (7) and (8), (9), we will derive

(14)

where the value of y is expressed from (11) through p
and w.

A positive root of Eq. (14) (which corresponds to
the nonzero magnetization) disappears under the con�
dition of equality of derivatives with respect to ω of the
right and left parts of (14) at w = 0. This condition
leads to the expression

(15)

which determines Kc(p). This result can be found by
another method going to limit w  0 in expressions
(11) and (13) at he = 0.

Thus, for values of p from range [pc, 1] at he = 0 and

K > Kc(1) = ln , where

W1 h ϕ,( ) δ h qρm–( )δ ϕ qρ–( ),=

W2 h1 h2 ϕ1 ϕ2, , ,( ) δ h1 q 1–( )ρm–( )x=

× δ h2 q 1–( )ρm–( )δ ϕ1 q 1–( )ρ–( )

× δ ϕ2 q 1–( )ρ–( ),
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p
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+ 2x2e K– L– 2L q 1–( )ρ– e 2K–
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, γ L

K
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J
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solution (6)–(9) can be found by formulas (10)–(13)
from he = 0. For values of p from range [0, pc] or for all
values of p at K < Kc(1), magnetization M = 0, while
the chemical potential

, (16)

where 

The calculation shows that chemical potential μ
calculated according to formulas (12) and (16) is a
monotonically increasing function of concentration p
at all values of temperature only if γ > –1. If γ ≠ –1, the
value of Kk occurs, at which there is the concentration

region for all K > Kk with  < 0. This means that in

addition to the magnetic phase transition in the system
at γ > –1 (i.e., if the positive potential of the Coulomb
interaction U is either positive or negative but does not
exceed exchange interaction energy J by absolute
value), the transition of the “liquid–gas” occurs,
which leads to the formation of phases with various
concentrations of magnetic atoms. To investigate the
phase diagram of the system, Eqs. (6)–(9) should be
added by the known Maxwell construction [6],
according to which, the chemical potential with

region  < 0 is replaced at a certain distance by a

constant, which is determined by the rule of “equal

μ kT q A( )ln q 1–( ) p
1 p–
���������ln+⎝ ⎠

⎛ ⎞–=

A 1
2p
���� 1 2p–( )(=

+ 1 2p–( )2 2p 1 p–( ) 1 e 2K–+( )e 1 γ+( )K+ ).

∂μ
∂p
�����

∂μ
∂p
�����

areas”. However, we will not perform this investigation
and limit ourselves by the analysis of the case γ ≤ –1.

Let us initially investigate the dependence of criti�

cal temperature  on the concentration of magnetic
atoms p. This dependence is determined by Eq. (15).

We will find from (15) at p = 1 that Kc(1) = ln ,

which corresponds to the Curie temperature for pure
Ising magnet in the Bethe approximation [5]. Func�

tion (p) decreases monotonically as p decreases at

γ = –1 and turns to zero at pc1 =  (curve 1 in

Fig. 1). If –3 < γ < –1, functions (p) are unambig�

uous and turn to zero at pc2 =  (curve 2 in

Fig. 1). Functions (p) at γ ≤ –3 become monoton�
ically decreasing with an increase in p turning to zero

at pc2 (curve 3 in Fig. 1); at γ  –∞, functions (p)
approach the limiting curve shown in Fig. 1 (curve 4).

We can find spontaneous magnetization M as a
function of concentration p from Eqs. (10)–(13) at
constant temperature θ = K–1. Particularly, function
M0(p) at θ  0 can be interpreted as the probability
of the fact that the randomly selected magnetic cluster
belongs to an infinite cluster of such atoms [2]. If we
come to limit K  0 in formulas (10)–(13), we will

Kc
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1
2
�� q

q 2–
���������

Kc
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2 q 1–( )

q2 2–
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Fig. 1. Concentration dependences of the Curie tempera�
ture for q = 4. The concentration of magnetic atoms p is
plotted along the abscissa, and the temperature parameter
θ = kT/J is plotted along the ordinate. γ = (1) –1, (2) –1.2,
(3) –3, and (4) –∞.
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Fig. 2. Concentration dependences of the spontaneous
magnetization for q = 4. The concentration of magnetic
atoms p is plotted along the abscissa, and the spontaneous
magnetization M is plotted along the ordinate. Curves 1
and 4 show limiting dependences M(p) at θ = 0: (1) γ = ⎯1
and (4) γ < –1. Curves 2, 3, and 5 are constructed at θ =

 for γ equal to –1, –1.5, and –3.5, respectively.1
3Kc 1( )
��������������
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derive that M(p)  M01(p) at γ = –1, while M(p) 
M02(p) at γ < –1. These curves are shown in Fig. 2
(curves 1 and 4, respectively). They turn to zero at p
equal to pc1 and pc2, respectively. The spontaneous
magnetization at any temperature θ is a monotonically
increasing function of concentration p; this function
depends on θ and γ at nonzero temperatures (Fig. 2,
curves 2, 3, and 5).

It follows from Fig. 1 that the dependence of mag�
netization M on temperature θ = K–1 will not be always
monotonic. Indeed, the calculation shows that mag�
netization monotonically decreases as the tempera�
ture rises at γ = –1 and γ ≤ –3 at any concentration p.
If –3 < γ < –1, the temperature dependence of magne�
tization is more complex (Fig. 3). In this case, there is
such concentration range of magnetic atoms, in which
the spontaneous magnetization in the system appears
only at a certain nonzero temperature θ1, increases as
the temperature increases passing through a maxi�
mum, and turns to zero again at temperature θ2 (curve
1 in Fig. 3). Temperature θ1 turns to zero at p = pc2

(curve 2 in Fig. 3), while the spontaneous magnetiza�
tion at p > pc2 in the system also occurs at θ = 0 as well
(curve 3 in Fig. 3), although dependence M(θ)
remains nonmonotonic as before. 

4. ONE�DIMENSIONAL ISING MODEL
WITH MOBILE IMPURITIES

It is known [4] that the Bethe approximation for
the Ising magnet without impurities can be considered
as an exact solution of the Ising problem for the Bethe
lattice. The partial case of the Bethe lattice is a one�
dimensional chain of magnetic atoms, for which an
exact solution can be constructed using a transfer�
matrix [5]. We can assume that the Bethe approxima�
tion considered in the previous section for the Ising
magnet with mobile impurities considered in the pre�
vious section is also an exact solution of the problem
for the Bethe lattice. To verify this assumption, let us
calculate statistic sum (1) for a one�dimensional chain
using a transfer matrix and compare the found result
with solution (10)–(13) at q = 2.

Let us write the statistic sum of the one�dimensional
chain, which consists of N sites in the following form: 

(17)

where r = μ/kT and cyclic boundary condition σ1 =
σN + 1 is used. Calculating (17) in one or another man�
ner, we can find the chemical potential and spontane�
ous magnetization from relationships

(18)

ZN

=  Kσiσi 1+ Lσi
2σi 1+

2 rσi
2 heσi+ +( )

i 1=

N

∑
⎩ ⎭
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σ{ }

∑

pM 1
N
���
∂ ZNln

∂he

������������, p 1
N
���
∂ ZNln

∂r
������������.= =

To calculate ZN, let us use the following method [5].
Let us consider transfer�matrix V

(19)

If λ1, λ2, and λ3 are intrinsic numbers of matrix (19),

then statistic sum (17) equals ZN =  +  + . Let
λ1 is the maximal eigenvalue of matrix V. Then formu�
las (18) in the thermodynamic limit (N → ∞) will
transform to

(20)

Eigenvalues (19) can be found from the character�
istic equation

(21)

where 

V
1 e
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e
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e
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e
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a 1 2e 1 γ+( )K r+ he( )cosh+( ),–=
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Fig. 3. Temperature dependences of the spontaneous mag�
netization at γ = –1.1 and q = 4. Temperature parameter
θ = kT/J is plotted along the abscissa, and the spontaneous
magnetization M is plotted along the ordinate. p = (1) 0.5,
(2) 0.6, and (3) 0.7.
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Differentiating (21) with respect to r and he and using
(20), we can write expressions for finding M and r
through λ1 and derivatives of coefficients a, b, and c

(22)

Solving (21) numerically or by Cardano’s formulas
[15] and finding λ1, we can derive the dependence of
magnetization M on p and he using (22). The calcula�
tion shows that thus calculated magnetization accu�
rately coincides with that one calculated according to
formulas (10)–(13) at q = 2.

5. CONCLUSIONS

Thus, based on our results, we can note the following.
Approximated self�consistent methods such as the

Bethe approximation, which are applied to the Ising
magnets without impurities or with frozen�in impuri�
ties [6–8], can be also used in the case of a more com�
plex model—the Ising model with mobile impurities.
The Bethe approximation applied to this model gives
the following results.

(i) The states of the system are mainly determined
by parameter γ—the ratio of the effective potential of
the Coulomb interaction U and exchange interaction
constant J. The separation into two macroscopic
phases with different equilibrium concentrations of
magnetic atoms is possible at γ > –1 in the system,
while the system at γ ≤ –1 remains homogeneous at all
parameters.

(ii) If parameter γ ≤ –1, i.e., when energy of the
Coulomb repulsion of magnetic atoms is no smaller
than the exchange interaction energy, there is their
limiting concentration (similar to the percolation
effect) below which the magnetization in the ground

state is absent. This limiting value is pc1 =  at

γ = –1 and pc2 =  at γ < –1.

(iii) There is the concentration region at –3 < γ <
⎯1, in which the magnetization in the ground state is
absent but appears as the temperature increases and
vanishes again with the further increase in temperature
(Figs. 1 and 3).

(iv) Our calculation shows that the Bethe approxi�
mation for the one�dimensional chain with mobile

pM

λ1
∂a
∂he

������ ∂b
∂he

������+

3λ1
2 2aλ1 b+ +

�����������������������������,–=

p
λ1

2∂a
∂r
����� λ1

∂b
∂r
����� ∂c

∂r
����+ +

3λ1
2 2aλ1 b+ +( )λ1

��������������������������������������.–=

2 q 1–( )

q2 2–
����������������

q 1–
2q 3–
������������

impurities is an exact solution of the problem as in the
case of a pure Ising magnet. This allows us to assume
that, for an arbitrary coordination number q, the
Bethe approximation in a model with mobile impuri�
ties can be considered as an exact solution of the prob�
lem for the Bethe tree.
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